TGFbeta signals play important roles in establishing the body axes and germ layers in the vertebrate embryo. Vg1 is a TGFbeta-related gene that, due to its maternal expression and vegetal localization in Xenopus, has received close examination as a potential regulator of development in Xenopus, zebrafish, and chick. However, a mammalian Vg1 ortholog has not been identified. To isolate mammalian Vg1 we screened a mouse expression library with a Vg1-specific monoclonal antibody and identified a single cross-reactive clone encoding mouse Gdf1. Gdf1 is expressed uniformly throughout the embryonic region at 5.5-6.5 days postcoitum and later in the node, midbrain, spinal cord, paraxial mesoderm, lateral plate mesoderm, and limb bud. When expressed in Xenopus embryos, native GDF1 is not processed, similar to Vg1. In contrast, a chimeric protein containing the prodomain of Xenopus BMP2 fused to the GDF1 mature domain is efficiently processed and signals via Smad2 to induce mesendoderm and axial duplication. Finally, right-sided expression of chimeric GDF1, but not native GDF1, reverses laterality and results in right-sided Xnr1 expression and reversal of intestinal and heart looping. Therefore, GDF1 can regulate left-right patterning, consistent with the Gdf1 loss-of-function analysis in the mouse (C. T. Rankin, T. Bunton, A. M. Lawler, and S. J. Lee, 2000, Nature Genet. 24, 262-265) and a proposed role for Vg1 in Xenopus. Our results establish that Gdf1 is posttranslationally regulated, that mature GDF1 activates a Smad2-dependent signaling pathway, and that mature GDF1 is sufficient to reverse the left-right axis. Moreover, these findings demonstrate that GDF1 and Vg1 are equivalent in biochemical and functional assays, suggesting that Gdf1 provides a Vg1-like function in the mammalian embryo.
VegT is an essential maternal regulator of germ layer specification in Xenopus. The localization of VegT mRNA to the vegetal cortex of the oocyte during oogenesis ensures its inheritance by vegetal and not animal cells, and directs the differentiation of vegetal cells into endoderm. Similarly localized mRNAs, Vg1 and Bicaudal-C, are also inherited by vegetal cells, while germ plasm-associated mRNAs, such as Xcat2, become incorporated into vegetally derived primordial germ cells. Although mRNA localization is clearly important for tissue specification, the mechanism of mRNA anchoring to the oocyte vegetal cortex is not understood. Here, we examine the role of VegT in cortical localization. We report that depletion of VegT mRNA caused the release of Vg1 mRNA from the vegetal cortex and a reduction of Vg1 protein, without affecting the total amount of Vg1 transcript. Furthermore, we found that Bicaudal-C and Wnt11 mRNAs were also dispersed, but not degraded, by VegT depletion, while the localization of Xcat2 and Xotx1 mRNAs was unaffected. This effect was specific to the loss of VegT mRNA and not VegT protein, since a morpholino oligo against VegT, that blocked translation without degrading mRNA, did not disperse the vegetally localized mRNAs. Therefore, a subset of localized mRNAs is dependent on VegT mRNA for anchoring to the vegetal cortex, indicating a novel function for maternal VegT mRNA.
In Xenopus, the prospective endoderm and mesoderm are localized to discrete, adjacent domains at the beginning of gastrulation, and this is made evident by the expression of Sox17 in vegetal blastomeres and Brachyury (Xbra) in marginal blastomeres. Here, we examine the regulation of Sox17alpha expression and the role of Sox17alpha in establishing the vegetal endodermal gene expression domain. Injection of specific inhibitors of VegT or Nodal resulted in a loss of Sox17alpha expression in the gastrula. However, the onset of Sox17alpha expression at the midblastula transition was dependent on VegT, but not on Nodal function, indicating that Sox17alpha expression is initiated by VegT and then maintained by Nodal signals. Consistent with these results, VegT, but not Xenopus Nodal-related-1 (Xnr1), can activate Sox17alpha expression at the midblastula stage in animal explants. In addition, VegT activates Sox17alpha in the presence of cycloheximide or a Nodal antagonist, suggesting that Sox17alpha is an immediate-early target of VegT in vegetal blastomeres. Given that Nodal signals are necessary and sufficient for both mesodermal and endodermal gene expression, we propose that VegT activation of Sox17alpha at the midblastula transition prevents mesodermal gene expression in response to Nodal signals, thus establishing the vegetal endodermal gene expression domain. Supporting this idea, Sox17alpha misexpression in the marginal zone inhibits the expression of multiple mesodermal genes. Furthermore, in animal explants, Sox17alpha prevents the induction of Xbra and MyoD, but not Sox17beta or Mixer, in response to Xnr1. Therefore, VegT activation of Sox17alpha plays an important role in establishing a region of endoderm-specific gene expression in vegetal blastomeres.
Abstractα2-macroglobulin is a major serum protein with diverse functions, including inhibition of protease activity and binding of growth factors, cytokines, and disease factors. We have cloned and characterized Panza, a new Xenopus laevis α2-macroglobulin. Panza has 56-60% amino acid similarity with previously identified Xenopus, mouse, rat and human α2-macroglobulins, indicating that Panza is a new member of the α2-macroglobulin family. Panza mRNA is first detected at the beginning of neurulation in the dorsal endoderm lining the primitive gut (archenteron roof). At the completion of neurulation and continuing through the late tadpole stage, Panza is restricted to a dorsal domain of the gut endoderm adjacent to the notochord and extending along the entire anteriorposterior axis. With outgrowth of the tailbud, Panza expression persists in the chordaneural hinge at the posterior end of the differentiating notochord and extends into the floor plate of the posterior neural tube. As gut coiling commences, Panza expression is initiated in the liver, and the dorsal domain of Panza expression becomes limited to the midgut and hindgut. With further gut coiling, strong Panza expression persists in the liver, but is lost from other regions of the gut. The expression of Panza in endodermal cells adjacent to the notochord points to a potential role for Panza in signal modulation and/or morphogenesis of the primitive gut. KeywordsXenopus laevis; α2-macroglobulin; endoderm; gut; digestive tract; liver Results and Discussionα2-macroglobulin (α 2 M) is an abundant plasma protein of vertebrates and arthropods that has a remarkable capacity to bind numerous and diverse ligands. α 2 M was first identified as a "panprotease inhibitor" capable of binding nearly all extracellular proteases, leading to clearance and degradation of α 2 M-protease complexes. Binding of protease to native α 2 M results in cleavage and activation of α 2 M, causing a conformational change that entraps protease and exposes binding sites for the α 2 M receptor. The α 2 M-protease complex binds to low density lipoprotein receptor-related protein (LRP), the major cell surface receptor for α 2 M, and the receptor bound complex is internalized by endocytosis, and targeted for lysosomal degradation (reviewed in Borth, 1992).* Author for correspondence Email:kesslerd@mail.med.upenn.edu, Tel: 215-898-1478, Fax: 215-573-7601 The conformational change that occurs with α 2 M activation also exposes binding sites for nonprotease ligands, including PDGF (Huang et al., 1984), FGF (Mathew et al., 2003), TGFβ1 (Huang et al., 1988;Stouffer et al., 1993;Feige et al., 1996;Arandjelovic et al., 2003), Activin A (Niemuller et al., 1995;Mather, 1996;Phillips, 2000), NGF (Ronne et al., 1979), TNF (James et al., 1992) and multiple Interleukins (Borth and Luger, 1989;Borth et al., 1990;Garber et al., 2000;Kurdowska et al., 2000). In complex with these ligands, α 2 M can serve either as a carrier that stabilizes ligand in circulation, a clearance factor for ligand degradation, or ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.