Resistin is an adipocyte hormone that modulates glucose homeostasis. Here we show that in 3T3-L1 adipocytes, resistin attenuates multiple effects of insulin, including insulin receptor (IR) phosphorylation, IR substrate 1 (IRS-1) phosphorylation, phosphatidylinositol-3-kinase (PI3K) activation, phosphatidylinositol triphosphate production, and activation of protein kinase B/Akt. Remarkably, resistin treatment markedly induces the gene expression of suppressor of cytokine signaling 3 (SOCS-3), a known inhibitor of insulin signaling. The 50% effective dose for resistin induction of SOCS-3 is ϳ20 ng/ml, close to levels of resistin in serum. Association of SOCS-3 protein with the IR is also increased by resistin. Inhibition of SOCS function prevented resistin from antagonizing insulin action in adipocytes. SOCS-3 induction is the first cellular effect of resistin that is independent of insulin and is a likely mediator of resistin's inhibitory effect on insulin signaling in adipocytes.
Although lumen generation has been extensively studied through so-called cyst-formation assays in Madin-Darby canine kidney (MDCK) cells, an underlying mechanism that leads to the initial appearance of a solitary lumen remains elusive. Lumen formation is thought to take place at early stages in aggregates containing only a few cells. Evolutionarily conserved polarity protein complexes, namely the Crumbs, Par, and Scribble complexes, establish apicobasal polarity in epithelial cells, and interference with their function impairs the regulated formation of solitary epithelial lumina. Here, we demonstrate that MDCK cells form solitary lumina during their first cell division. Before mitosis, Crumbs3a becomes internalized and concentrated in Rab11-positive recycling endosomes. These compartments become partitioned in both daughter cells and are delivered to the site of cytokinesis, thus forming the first apical membrane, which will eventually form a lumen. Endosome trafficking in this context appears to depend on the mitotic spindle apparatus and midzone microtubules. Furthermore, we show that this early lumen formation is regulated by the apical polarity complexes because Crumbs3 assists in the recruitment of aPKC to the forming apical membrane and interference with their function can lead to the formation of a no-lumen or multiple-lumen phenotype at the two-cell stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.