Objective: To assess the feasibility and robustness of an asynchronous and non-invasive EEG-based Brain-Computer Interface (BCI) for continuous mental control of a wheelchair. Methods: In experiment 1 two subjects were asked to mentally drive both a real and a simulated wheelchair from a starting point to a goal along a pre-specified path. Here we only report experiments with the simulated wheelchair for which we have extensive data in a complex environment that allows a sound analysis. Each subject participated in five experimental sessions, each consisting of 10 trials. The time elapsed between two consecutive experimental sessions was variable (from 1 h to 2 months) to assess the system robustness over time. The pre-specified path was divided into seven stretches to assess the system robustness in different contexts. To further assess the performance of the brain-actuated wheelchair, subject 1 participated in a second experiment consisting of 10 trials where he was asked to drive the simulated wheelchair following 10 different complex and random paths never tried before. Results: In experiment 1 the two subjects were able to reach 100% (subject 1) and 80% (subject 2) of the final goals along the pre-specified trajectory in their best sessions. Different performances were obtained over time and path stretches, what indicates that performance is time and context dependent. In experiment 2, subject 1 was able to reach the final goal in 80% of the trials. Conclusions: The results show that subjects can rapidly master our asynchronous EEG-based BCI to control a wheelchair. Also, they can autonomously operate the BCI over long periods of time without the need for adaptive algorithms externally tuned by a human operator to minimize the impact of EEG non-stationarities. This is possible because of two key components: first, the inclusion of a shared control system between the BCI system and the intelligent simulated wheelchair; second, the selection of stable user-specific EEG features that maximize the separability between the mental tasks. Significance: These results show the feasibility of continuously controlling complex robotics devices using an asynchronous and noninvasive BCI.
Future neuroprosthetic devices, in particular upper limb, will require decoding and executing not only the user's intended movement type, but also when the user intends to execute the movement. This work investigates the potential use of brain signals recorded non-invasively for detecting the time before a self-paced reaching movement is initiated which could contribute to the design of practical upper limb neuroprosthetics. In particular, we show the detection of self-paced reaching movement intention in single trials using the readiness potential, an electroencephalography (EEG) slow cortical potential (SCP) computed in a narrow frequency range (0.1–1 Hz). Our experiments with 12 human volunteers, two of them stroke subjects, yield high detection rates prior to the movement onset and low detection rates during the non-movement intention period. With the proposed approach, movement intention was detected around 500 ms before actual onset, which clearly matches previous literature on readiness potentials. Interestingly, the result obtained with one of the stroke subjects is coherent with those achieved in healthy subjects, with single-trial performance of up to 92% for the paretic arm. These results suggest that, apart from contributing to our understanding of voluntary motor control for designing more advanced neuroprostheses, our work could also have a direct impact on advancing robot-assisted neurorehabilitation.
When compared with conventional, single-shot spinal anesthesia, epidural volume extension of a small-dose spinal block provides satisfactory anesthesia for cesarean delivery with only 55% of the bupivacaine dose required and is associated with faster motor recovery of the lower limbs.
Abstract-In this paper we present further results of our asynchronous and non-invasive BMI for the continuous control of an intelligent wheelchair. Three subjects participated in two experiments where they steered the wheelchair spontaneously, without any external cue. To do so the users learn to voluntary modulate EEG oscillatory rhythms by executing three mental tasks (i.e., mental imagery) that are associated to different steering commands. Importantly, we implement shared control techniques between the BMI and the intelligent wheelchair to assist the subject in the driving task. The results show that the three subjects could achieve a significant level of mental control, even if far from optimal, to drive an intelligent wheelchair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.