BackgroundSonication is a valuable tool in the diagnosis of periprosthetic joint infections (PJI). However, conditions and definition criteria for PJI vary among studies. The aim of this study was to determine the diagnostic performance (i.e., specificity, sensitivity) of sonicate fluid culture (SFC) against periprosthetic tissue culture (PTC), when using European Bone and Joint Infection Society (EBJIS) criteria.MethodsFrom March 2017 to April 2018, 257 implants were submitted for sonication. PJI was defined according to the EBJIS criteria as well as according to the International Consensus Meeting criteria of 2018 (ICM 2018). Only cases with at least one corresponding tissue sample were included. Samples were cultured using traditional microbiological plating techniques. Sensitivity and specificity were determined using two-by-two contingency tables. McNemar’s test was used to compare proportions among paired samples. Subgroup analysis was performed dividing the cohort according to the site of PJI, previous antibiotic treatment, and time of manifestation. Prevalence of pathogens was determined for all patients as well as for specific subgroups.ResultsAmong the 257 cases, 145 and 112 were defined as PJI and aseptic failure, respectively. When using the EBJIS criteria, the sensitivity of SFC and PTC was 69.0 and 62.8%, respectively (p = .04). Meanwhile, the specificity was 90.2 and 92.9%, respectively (p = .65). When adopting ICM 2018 criteria, the sensitivity of SFC and PTC was 87.5 and 84.4% (p = .63) respectively, while the specificity was 85.1 and 92.5% (p = .05), respectively. The most commonly identified pathogens were coagulase-negative staphylococci (26% overall), while 31% of PJI were culture-negative and 9% polymicrobial.ConclusionsSFC exhibited significantly greater sensitivity versus PTC when using the EBJIS criteria. Nevertheless, the diagnosis of PJI remains a difficult challenge and different diagnostic tools are necessary to optimize the outcome.
Introduction Among the few techniques described for the treatment of coronoid fractures, osteosynthesis techniques include screw osteosynthesis from anterior to posterior (AP) or from posterior to anterior (PA) and plate osteosynthesis. The aim of this study was to test the biomechanical stability of screw osteosynthesis and plate osteosynthesis using anatomical plates in coronoid process fractures. Materials and methods On a total of 25 biomechanical synthetical ulnae, a coronoid shear fracture including 70% of the coronoid height was simulated. Osteosynthesis was then performed using two 2.7 mm screws from anterior, posterior and with use of three different anatomical plates of the coronoid process. For the biomechanical testing, axial load was applied to the fragment with 1000 cycles from 5 to 250 N, load to failure and load at 100 µm displacement. Displacements were measured using a point-based three-dimensional motion analysis system. Results Osteosynthesis using the PA-screw showed significant more displacement during cyclic loading compared with all other osteosyntheses (0.99 mm), whereas AP-screw showed the smallest displacement (0.10 mm) during cyclic loading. The PA-screw technique showed a significant lower load to failure compared to all other osteosynthesis with the highest load in AP-screw osteosynthesis. The load for 100 µm displacement was the smallest in PA-screw with a significant difference to the AP-screw and one plate osteosynthesis. Conclusion Osteosynthesis of large coronoid shear fractures with two small-fragment screws from anterior allows stable fixation that is not inferior to anterior plate osteosynthesis and might be an alternative in specific fracture types. Posterior screw fixation was found as the weakest fixation method. Level of evidence Basic science study
Bilateral proximal humerus fractures are mainly associated with comminuted displaced fractures and a higher complication rate in comparison to monolateral fractures after surgical treatment.
Background. Glenohumeral combination fractures are severe shoulder injuries for which, however, few data are available in the literature. The aim of the study was to analyze the incidence and numeric distribution of glenohumeral combination fractures using a classification system. Furthermore, treatment methods and complications are discussed. Methods. This retrospective study is based on the data evaluation of a level I trauma center between 1998 and 2016. Glenohumeral combination fractures are classified into four types, and the incidence, treatment method, and complications are evaluated. Additionally, the fracture morphology and displacement of the different fracture types are analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.