Melanin pigments have various properties that are of technological interest including photo‐ and radiation protection, rich coloration, and electronic functions. Nevertheless, laboratory‐based synthesis of melanin and melanin‐like materials with morphologies and chemical structures that are specifically optimized for these applications, is currently not possible. Here, melanin‐like materials that are produced by enzymatic oxidation of a supramolecular tripeptide structures that are rich in tyrosine and have a 1D morphology are demonstrated, that are retained during the oxidation process while conducting tracks form through oxidative tyrosine crosslinking. Specifically, a minimalistic self‐assembling peptide, Lys–Tyr–Tyr (KYY) with strong propensity to form supramolecular fibers, is utilized. Analysis by Raman spectroscopy shows that the tyrosines are pre‐organized inside these fibers and, upon enzymatic oxidation, result in connected catechols. These form 1D conducting tracks along the length of the fiber, which gives rise to a level of internal disorder, but retention of the fiber morphology. This results in highly conductive structures demonstrated to be dominated by proton conduction. This work demonstrates the ability to control oxidation but retain a well‐defined fibrous morphology that does not have a known equivalent in biology, and demonstrate exceptional conductivity that is enhanced by enzymatic oxidation.
Peptide fibre formation via molecular self-assembly is a key step in a range of cellular processes and increasingly considered as an approach to produce supramolecular biomaterials. We previously demonstrated the self-assembly of the tripeptide lysine-dityrosine (KYY) as a substrate for the formation of proton-conducting melanin-like materials. Point based Raman scattering is one of several techniques which were used to characterise the secondary structure of the KYY nanofibre but as is often the case with this type of fibre, the spectra are rather complex and in addition there were variations in intensity between samples making interpretation difficult. Using Raman mapping we show that, as a drop of KYY in solution dries, it self-assembles into two different fibre forms and the simpler spectra obtained for each are easier to interpret. The tyrosine amide marker bands, 852 and 828 cm À1 , are present in both forms with similar intensities indicating the formation of a similar secondary structure in both forms with some stacking of the tyrosine rings. However, the tyrosine marker bands at 1614 and 1661 cm À1 vary considerably in intensity between the two forms. It is concluded that both forms consist of stacked polypeptide units joined by hydrogen bonds to form structures similar to β-sheet structures in longer peptides. There are other clear differences such the large intensity difference in the lysine side chain band at 1330 cm À1 and the relative intensities of the bands at 982 and 1034 cm À1 . These differences are attributed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.