The thermoinactivation of native diisopropylfluorophosphatase (DFPase, EC 3.8.2.1) is highly calcium dependent, first-order kinetic. Deactivation is coupled with a simultaneous reduction in beta-sheet content. We report herein our attempts to enhance the thermostability of DFPase by irreversibly incorporating the enzyme into polyurethane polymers. Immobilized DFPase has biphasic deactivation kinetics. Our data demonstrate that the initial rapid deactivationof immobilized DFPase leads to the formation of a hyperstable and still active form of enzyme. Like native DFPase, DFPase-containing polyurethanes exhibit a calcium-dependent thermostability. Since bioplastics cannot be analyzed by spectroscopy, the structural mechanisms involved in thermoinactivation of immobilized DFPase were determined using PEG-modified DFPase. The thermoinactivation profile of highly modified DFPase mirrors the stepwise deactivation pattern of bioplastics. Spectroscopic studies enable a structural analysis of the hyperstable intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.