Authigenic components in marine sediments are important archives for past environment reconstructions. However, defining reliable age constraints and assessing the effects of post-depositional overprints in Precambrian sequences are challenging. We demonstrate a new laser-based analytical approach that has the potential to rapidly and accurately evaluate the depositional and alteration histories of Proterozoic shales. Our study employs a novel application of in situ Rb-Sr dating coupled with simultaneous trace-element analysis using reaction-cell laser ablation–inductively coupled plasma–tandem mass spectrometry (LA-ICPMS/MS). We present results from shales sourced from two wells in the Proterozoic McArthur Basin, northern Australia. These rocks have been widely used by previous studies as a key section for ancient biogeochemical and paleo-redox reconstructions. Shales from well UR5 yielded initial 87Sr/86Sr ratios, Rb-Sr ages, and rare earth element plus yttrium (REEY) patterns similar to those of a dolerite sampled from the same core. We propose that the UR5 samples chronicle hydrothermal alteration instigated by the dolerite intrusion. In contrast, a correlative shale from well UR6 yielded an age consistent with the expected depositional age (1577 ± 56 Ma) with REEY and initial 87Sr/86Sr ratios similar to ca. 1.5 Ga seawater. We suggest that this sample records the minimum depositional age and early marine diagenetic history for this unit. This new technique can date Proterozoic shales quickly, cheaply, and with minimum sample preparation. Importantly, ages are triaged to differentiate between those recording primary marine versus secondary processes. This novel approach provides a potentially powerful tool for dating and fingerprinting the vast array of ancient marine shales for further studies of Earth systems through deep time.
<p>The greater McArthur Basin is a regionally extensive Palaeo-to-Mesoproterozic, intra-cratonic, super basin system overlying the North Australian craton. Deposition initiated after the Pine Creek Orogeny whereby the basin extends from Western Australia to northwestern Queensland. Lithostratigraphic units are divided into five coherent packages of similar age, stratigraphic position and facies association. Successions of the basin system are dominated by an assemblage of sedimentary siliciclastics, evaporitic carbonates and organic-rich mudstones with minor intersections of volcanic rocks and records nearly a billion years of Earth&#8217;s history from ca. 1.82 Ga to the Tonian. This period has generally been considered a time of stability within the Earth system and is therefore unfortunately titled &#8216;the boring billion&#8217;. However, compilation of new and existing water chemistry proxies shown in this study reflected the contrary. Notably, shales and carbonates from the greater McArthur Basin chronicled a critical time in Earth&#8217;s history; where the oxygenation of the ocean and atmosphere began and multi-cellular eukaryotes started to thrive within the ecosystem, demonstrating that this interval in the geological record is anything but boring.</p><p>This study applied a multi-proxy approach based on observations of isotopic tracers and elemental variations from an extensive archive of carbonate-rich units throughout the greater McArthur Basin to reconstruct its palaeoenvironment, determine the tectonic setting and establish regional or global correlations. Elucidating the evolution of the basin is essential for understanding the controls of its petroleum and mineral resources as well as how Earth system processes developed during the Proterozoic. Radiogenic and stable isotopes are used to infer palaeo-depositional constraints such as biological productivity, weathering fluxes and provenance sources. Redox-sensitive elemental concentrations can also be used to reflect the changes in water-column chemistry between oxic, anoxic and euxinic conditions.</p><p>Consequently, results from this study illustrate the relationship between the precipitation of metal compounds, production of organic matter and preservation of both systems with large-scale biogeochemical processes. Furthermore, this study also highlights the spatial and temporal variations of water chemistry within the basin. Enrichment in Mo concentrations in the Wollogorang Formation within the Tawallah Group indicated spells of widespread euxinia. Base metal concentrations within the unit showed lithogeochemical, halo-like distribution that is strongly correlated with changes in water column redox conditions. A shift to more radiogenic <sup>87</sup>Sr/<sup>86</sup>Sr values up to &#8764;0.722 in the Fraynes Formation of the Limbunya Group reflected an increase in relative contribution of strontium from old continental crust in contrast to hydrothermal input which is consistent with a transient basin restriction from the open ocean. Rare earth and yttrium (REY) plots of the Dook Creek Formation inferred parts of the basin may have been lacustrine at ca. 1.5 Ga. Further up stratigraphy, the Middle Velkerri showed a shift towards more positive &#949;<sub>Nd(t)</sub> values, representing a change to more juvenile source regions. These mafic provenances are richer in essential nutrients for biological activity such as phosphorus. More juvenile &#949;<sub>Nd(t) </sub>data within the Velkerri Formation coincide with an increase in P concentrations and total organic carbon content (>8 wt. %).</p>
<p>There is still little known about the occurrence, formation and spatial distribution of long-lived cratonic basins that form during hundreds of millions of years of subsidence. Their histories often span multiple phases of super-continent break-up, dispersal and amalgamation. Each of these phases resulted in the modification of sedimentation rates and drainage within the basins but the broader basin persisted. These changing conditions are recorded in the detrital zircon record, providing a tool for understanding the basin evolution and consequently its palaeogeography.</p><p>The informally termed greater McArthur Basin is a regionally extensive Proterozoic basin that overlies the North Australian Craton. It is a vast sedimentary system that stretches across the northern part of the Northern Territory from north-eastern Western Australia to north-western Queensland. It includes Palaeo- to Mesoproterozoic successions of the McArthur and Birrindudu basins, the Tomkinson Province and likely the Lawn Hill Platform and South Nicholson Basin (to the south-east); all interpreted to be contemporaneous systems. However, the full extent of the greater McArthur Basin sedimentary system is still being unravelled. The basin records nearly one billion years of Earth history, from ca. 1.82 Ga to ca. 0.85 Ma. This sedimentary system temporally overlaps with episodes of Palaeo- to Mesoproterozoic tectonism and igneous activity that affected underlying and adjacent terranes, including the Aileron, Warumpi and Musgrave provinces to the present-day south, Pine Creek Orogen and Arnhem Province to the north, Halls Creek Orogen and Tanami Region to the west, and Mount Isa and Murphy provinces to the east. &#160;</p><p>LA-ICP-MS detrital zircon U&#8211;Pb geochronology and Lu&#8211;Hf isotope data provide new constraints on the lower sedimentary successions of the McArthur Basin (Tawallah and Katherine River Groups) and demonstrate they are coetaneous with the Tomkinson Province (Tomkinson Creek Group). U&#8211;Pb detrital zircon data show major <sup>207</sup>Pb /<sup>206</sup>Pb peaks at ca. 1860 Ma and ca. 2500&#8211;2400 Ma in both the McArthur Basin and Tomkinson Province sediments. Combined with Lu&#8211;Hf isotope data, the detrital zircon age data from the McArthur Basin show similarities to the Aileron Province (to the south) and magmatic rocks of the Gawler Craton, suggesting that these terranes might be possible source areas. Comparatively, the oldest succession within the Tomkinson Province (Hayward Creek Formation), shows similar spectra to units within the Lawn Hill Platform succession (McNamara Group, Surprise Creek Sandstone and Carrara Range Group) possibly suggesting a correlation between the two areas.</p><p>Here we explore the links between the North Australia Craton and surrounding continents to further elucidate the evolution of this enigmatic basin throughout the Proterozoic. New palaeogeographic reconstructions link the &#8216;greater&#8217; McArthur basin to the Yanliao Basin and coeval rocks in the North China Craton. The &#8216;greater&#8217; McArthur basin may also have extended into southern Australia, Laurentia and Siberia as a vast intra-continental gulf (the McArthur-Yanliao Gulf) within the core of the supercontinent Nuna/Colombia.</p>
Authigenic components in marine sediments are important archives for past environment reconstructions. However, defining reliable age constraints and assessing the effects of post depositional overprints in Precambrian sequences are challenging. We demonstrate a new laserbased analytical approach that has the potential to rapidly and accurately evaluate the depositional and alteration histories of Proterozoic shales. Our study employs a novel application of in situ Rb-Sr dating coupled with simultaneous trace-element analysis using reaction-cell laser ablation– inductively coupled plasma–tandem mass spectrometry (LA-ICPMS/MS). We present results from shales sourced from two wells in the Proterozoic McArthur Basin, northern Australia. These rocks have been widely used by previous studies as a key section for ancient biogeochemical and paleoredox reconstructions. Shales from well UR5 yielded initial ⁸⁷Sr/⁸⁶Sr ratios, Rb-Sr ages, and rare earth element plus yttrium (REEY) patterns similar to those of a dolerite sampled from the same core. We propose that the UR5 samples chronicle hydrothermal alteration instigated by the dolerite intrusion. In contrast, a correlative shale from well UR6 yielded an age consistent with the expected depositional age (1577 ± 56 Ma) with REEY and initial ⁸⁷Sr/⁸⁶Sr ratios similar to ca. 1.5 Ga seawater. We suggest that this sample records the minimum depositional age and early marine diagenetic history for this unit. This new technique can date Proterozoic shales quickly, cheaply, and with minimum sample preparation. Importantly, ages are triaged to differentiate between those recording primary marine versus secondary processes. This novel approach provides a potentially powerful tool for dating and fingerprinting the vast array of ancient marine shales for further studies of Earth systems through deep time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.