This investigation shows that the alpha 2 beta 2 tryptophan synthase bienzyme complex from Salmonella typhimurium is subject to monovalent metal ion activation. The effects of the monovalent metal ions Na+ and K+ were investigated using rapid scanning stopped-flow (RSSF), single-wavelength stopped-flow (SWSF), and steady-state techniques. RSSF measurements of individual steps in the reaction of L-serine and indole to give L-trytophan (the beta-reaction) as well as the reaction of 3-indole-D-glycerol 3'-phosphate (IGP) with L-serine (the alpha beta-reaction) demonstrate that monovalent metal ions such as Na+ and K+ change the distribution of intermediates in both the transient and steady states. Therefore the metal ion effect alters relative ground-state energies and the relative positions of ground- and transition-state energies. The RSSF spectra and SWSF time courses show that the turnover of indole is significantly reduced in the absence of either Na+ or K+. The alpha-aminoacrylate Schiff base species, E(A-A), is in a less active state in the absence of monovalent metal ions. Na+ decreases the steady-state rate of IGP cleavage (the alpha-reaction) to about 30% of the value obtained in the absence of metal ions. Steady-state investigations show that in the absence of monovalent metal ions the alpha- and alpha beta-reactions have the same activity. Na+ binding gives a 30-fold stimulation of the alpha-reaction when the beta-site is in the E(A-A) form.(ABSTRACT TRUNCATED AT 250 WORDS)
The tryptophan synthase bienzyme complex is activated and regulated by the allosteric action of monovalent cations (MVCs). The kinetic dissection of the first stage (stage I) in the beta-reaction of tryptophan synthase, the reaction of L-serine with pyridoxal 5'-phosphate at the beta-site to give the alpha-aminoacrylate Schiff base intermediate, E(A-A), is here examined in the absence and presence of MVCs. This analysis reveals which of the individual steps are greatly affected in stage I and how the ground states and transition states are affected by MVCs. Kinetic studies in combination with a detailed relaxation kinetic analysis to determine the specific rate constants for the conversion of the L-Ser external aldimine, E(Aex1), to E(A-A) show that the primary kinetic isotope effect for proton abstraction from Calpha of the E(Aex1) species changes from 4.0 +/- 0.4 in the absence of MVCs to a value of 5.9 +/- 0.5 in the presence of Na+, indicating that the nature of the transition state for this C-H scission is significantly perturbed by the MVC effect. The E(A-A) species was found to exist in two conformations with different activities, the ratio of which is affected by the presence of MVCs. It is shown that changes in the rate constants of stage I are important in establishing the ratio of active to inactive conformations of the E(A-A) species. Consequently, the MVC effect alters the relative energies of both the transition states and the ground states for selected steps in stage I of the pathway. Hence, interactions at the MVC site give rise to a fine-tuning of the covalent bonding interactions between active site residues and the reacting substrate during the conformational cycle of the bienzyme complex.
The alpha-subunit of the tryptophan synthase bienzyme complex catalyzes the formation of indole from the cleavage of 3-indolyl-D-glyceraldehyde 3'-phosphate, while the beta-subunit utilizes L-serine and the indole produced at the alpha-site to form tryptophan. The replacement reaction catalyzed by the beta-subunit requires pyridoxal 5'-phosphate (PLP) as a cofactor. The beta-reaction occurs in two stages: in stage I, the first substrate, L-Ser, reacts with the enzyme-bound PLP cofactor to form an equilibrating mixture of the L-Ser Schiff base, E(Aex1), and the alpha-aminoacrylate Schiff base intermediate, E(A-A); in stage II, this intermediate reacts with the second substrate, indole, to form tryptophan. Monovalent cations (MVCs) are effectors of these processes [Woehl, E., and Dunn, M. F. (1995) Biochemistry 34, 9466-9476]. Herein, detailed kinetic dissections of stage II are described in the absence and in the presence of MVCs. The analyses presented complement the results of the preceding paper [Woehl, E., and Dunn, M. F. (1999) Biochemistry 38, XXXX-XXXX], which examines stage I, and confirm that the chemical and conformational processes in stage I establish the presence of two slowly interconverting conformations of E(A-A) that exhibit different reactivities in stage II. The pattern of kinetic isotope effects on the overall activity of the beta-reaction shows an MVC-mediated change in rate-limiting steps. In the absence of MVCs, the reaction of E(A-A) with indole becomes the rate-limiting step. In the presence of Na+ or K+, the conversion of E(Aex1) to E(A-A) is rate limiting, whereas some third process not subject to an isotope effect becomes rate determining for the NH4+-activated enzyme. The combined results from the preceding paper and from this study define the MVC effects, both for the reaction catalyzed by the beta-subunit and for the allosteric communication between the alpha- and beta-sites. Partial reaction-coordinate free energy diagrams and simulation studies of MVC effects on the proposed mechanism of the beta-reaction are presented.
This work examines two aspects of the catalytic mechanism and allosteric regulation of the tryptophan synthase bienzyme complex from Salmonella typhimurium: (a) the chemical mechanism by which indole and other nucleophiles react with the enzyme-bound alpha-aminoacrylate Schiff base intermediate, E(A-A), to form quinonoidal intermediates, E(Q), and (b) the effects of covalent transformations at the beta-site on the catalytic activity of the alpha-site. Transient kinetic studies in combination with alpha-secondary deuterium isotope effects are undertaken to determine the mechanism of nucleophile addition to E(A-A). These studies establish that nucleophilic attack is best described by a two-step reaction sequence consisting of a binding step that is followed by Michael addition to the conjugated double bond of E(A-A). Analysis of isotope effects suggests that the transition state for indole addition gives an E(A-A) beta-carbon that resembles an sp3 center, while the stronger nucleophiles, indoline and beta-mercaptoethanol, have transition states that appear to more closely resemble an sp2 beta-carbon. The effects of beta-site covalent transformations on alpha-site catalysis were studied using quasi-stable beta-site intermediates and the alpha-site substrate analogue 3-[6-nitroindole]-D-glycerol 3'-phosphate (6-nitro-IGP). It was found that the cleavage of 6-nitro-IGP is strongly activated by the formation of E(A-A) and various E(Q) species at the beta-site but not by external aldimine species. Therefore, we conclude that the conversion of the L-Ser external aldimine to E(A-A) is the beta-site process which activates the alpha-site, while conversion of E(Q) to the L-Trp external aldimine triggers deactivation of the alpha-site. These findings are discussed within the context of allosteric regulation of substrate channeling in tryptophan synthase catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.