Concentrations of atrial natriuretic peptide (ANP) are increased in plasma of patients with impaired cardiac and renal function. The second messenger of ANP, cyclic guanosine monophosphate (cGMP), is released into the plasma specifically upon stimulation of cells with ANP. Although nitrates can also activate intracellular cGMP synthesis, we detected no increase in plasma cGMP concentrations after infusions of glycerol trinitrate. Because immunoreactive ANP is highly susceptible to degradation and nonspecific influences in blood samples, determinations of ANP require immediate centrifugation and storage of plasma at -20 degrees C. In contrast, we found that cGMP is stable for five days in vitro in blood samples containing EDTA. In 147 healthy blood donors, the upper cutoff value for plasma cGMP was 6.60 nmol/L, not significantly different (P greater than 0.05) from that for 222 patients with disorders other than cardiovascular and renal. In 69 patients with manifest congestive heart failure (NYHA stages II-IV), 65 had increased cGMP values. Using the above cutoff value for cGMP gave diagnostic sensitivity of 94.2% and specificity of 93.7%. Plasma cGMP may thus provide an alternative for routine clinical measurements of ANP in cardiac diseases in the absence of renal disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.