We study the factorization of soft and collinear singularities in dimensionallyregularized fixed-angle scattering amplitudes in massless gauge theories. Our factorization is based on replacing the hard massless partons by light-like Wilson lines, and defining gauge-invariant jet and soft functions in dimensional regularization. In this scheme the factorized amplitude admits a powerful symmetry: it is invariant under rescaling of individual Wilson-line velocities. This symmetry is broken by cusp singularities in both the soft and the eikonal jet functions. We show that the cancellation of these cusp anomalies in any multi-leg amplitude imposes all-order constraints on the kinematic dependence of the corresponding soft anomalous dimension, relating it to the cusp anomalous dimension. For amplitudes with two or three hard partons the solution is unique: the constraints fully determine the kinematic dependence of the soft function. For amplitudes with four or more hard partons we present a minimal solution where the soft anomalous dimension is a sum over colour dipoles, multiplied by the cusp anomalous dimension. In this case additional contributions to the soft anomalous dimension at three loops or beyond are not excluded, but they are constrained to be functions of conformal cross ratios of kinematic variables.
Considering 2 → 2 gauge-theory scattering with general colour in the highenergy limit, we compute the Regge-cut contribution to three loops through next-to-nextto-leading high-energy logarithms (NNLL) in the signature-odd sector. Our formalism is based on using the non-linear Balitsky-JIMWLK rapidity evolution equation to derive an effective Hamiltonian acting on states with a fixed number of Reggeized gluons. A new effect occurring first at NNLL is mixing between states with k and k + 2 Reggeized gluons due non-diagonal terms in this Hamiltonian. Our results are consistent with a recent determination of the infrared structure of scattering amplitudes at three loops, as well as a computation of 2 → 2 gluon scattering in N = 4 super Yang-Mills theory. Combining the latter with our Regge-cut calculation we extract the three-loop Regge trajectory in this theory. Our results open the way to predict high-energy logarithms through NNLL at higher-loop orders.
We present the three-loop result for the soft anomalous dimension governing long-distance singularities of multileg gauge-theory scattering amplitudes of massless partons. We compute all contributing webs involving semi-infinite Wilson lines at three loops and obtain the complete three-loop correction to the dipole formula. We find that nondipole corrections appear already for three colored partons, where the correction is a constant without kinematic dependence. Kinematic dependence appears only through conformally invariant cross ratios for four colored partons or more, and the result can be expressed in terms of single-valued harmonic polylogarithms of weight five. While the nondipole three-loop term does not vanish in two-particle collinear limits, its contribution to the splitting amplitude anomalous dimension reduces to a constant, and it depends only on the color charges of the collinear pair, thereby preserving strict collinear factorization properties. Finally, we verify that our result is consistent with expectations from the Regge limit.
Soft gluon exponentiation in non-abelian gauge theories can be described in terms of webs. So far this description has been restricted to amplitudes with two hard partons, where webs were defined as the colour-connected subset of diagrams. Here we generalise the concept of webs to the multi-leg case, where the hard interaction involves non-trivial colour flow. Using the replica trick from statistical physics we solve the combinatorial problem of non-abelian exponentiation to all orders. In particular, we derive an algorithm for computing the colour factor associated with any given diagram in the exponent. The emerging result is exponentiation of a sum of webs, where each web is a linear combination of a subset of diagrams that are mutually related by permuting the eikonal gluon attachments to each hard parton. These linear combinations are responsible for partial cancellation of subdivergences, conforming with the renormalization of a multi-leg eikonal vertex. We also discuss the generalisation of exponentiation properties to beyond the eikonal approximation.
In the past decade, one of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor. In this time frame, measurements and the theoretical interpretation of their results have advanced tremendously. A much broader understanding of flavor particles has been achieved; apart from their masses and quantum numbers, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. In the past, observations of CP violation were confined to neutral K mesons, but since the early 1990s, a large number of CP-violating processes have been studied in detail in neutral B mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of K, D, and B mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near future, there will be a transition from the current to a new generation of experiments; thus a review of the status of quark flavor physics is timely. This report is the result of the work of physicists attending the 5th CKM workshop, hosted by the University of Rome "La Sapienza", September 9-13, 2008. It summarizes the results of the current generation of experiments that are about to be completed and it confronts these results with the theoretical understanding of the field which has greatly improved in the past decade. (C) 2010 Elsevier B.V. All rights reserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.