HOW TO CITE TSPACE ITEMSAlways cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the TSpace version (original manuscript or accepted manuscript) because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page. Abstract. Species spatial distributions are the result of population demography, behavioral traits, and species interactions in spatially heterogeneous environmental conditions. Hence the composition of species assemblages is an integrative response variable, and its variability can be explained by the complex interplay among several structuring factors. The thorough analysis of spatial variation in species assemblages may help infer processes shaping ecological communities. We suggest that ecological studies would benefit from the combined use of the classical statistical models of community composition data, such as constrained or unconstrained multivariate analyses of site-by-species abundance tables, with rapidly emerging and diversifying methods of spatial pattern analysis. Doing so allows one to deal with spatially explicit ecological models of beta diversity in a biogeographic context through the multiscale analysis of spatial patterns in original species data tables, including spatial characterization of fitted or residual variation from environmental models. We summarize here the recent progress for specifying spatial features through spatial weighting matrices and spatial eigenfunctions in order to define spatially constrained or scale-explicit multivariate analyses. Through a worked example on tropical tree communities, we also show the potential of the overall approach to identify significant residual spatial patterns that could arise from the omission of important unmeasured explanatory variables or processes. REVIEWS
Continental-scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced microclimatic variation could allow species to persist locally, and are ill-suited for assessment of species-specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high-resolution (ca. 100 m) species samples and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36-55% of alpine species, 31-51% of subalpine species and 19-46% of montane species lose more than 80% of their suitable habitat by 2070-2100. While our high-resolution analyses consistently indicate marked levels of threat to cold-adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming accompanied by decreased precipitation, such as the Pyrenees and the Eastern Austrian Alps, will likely be greater than on florae in regions where the increase in temperature is less pronounced and rainfall increases concomitantly, such as in the Norwegian Scandes and the Scottish Highlands. This suggests that change in precipitation, not only warming, plays an important role in determining the potential impacts of climate change on vegetation
Abstract:Intercept-based methods of generating a point estimate of a calibrated radiocarbon date are very popular, but exhibit undesirable behaviour. They are highly sensitive to the mean of the radiocarbon date and to adjustments of the calibration curve. Other methods give more stable results. The weighted average of the probability distribution function is recommended as the best central-point estimate, but more consideration should be given to using the full probability distribution rather than a point estimate in developing agedepth models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.