The discovery of subsets with special properties from binary data has been one of the key themes in pattern discovery. Pattern classes such as frequent itemsets stress the co-occurrence of the value 1 in the data. While this choice makes sense in the context of sparse binary data, it disregards potentially interesting subsets of attributes that have some other type of dependency structure.We consider the problem of finding all subsets of attributes that have low complexity. The complexity is measured by either the entropy of the projection of the data on the subset, or the entropy of the data for the subset when modeled using a Bayesian tree, with downward or upward pointing edges. We show that the entropy measure on sets has a monotonicity property, and thus a levelwise approach can find all low-entropy itemsets. We also show that the treebased measures are bounded above by the entropy of the corresponding itemset, allowing similar algorithms to be used for finding low-entropy trees. We describe algorithms for finding all subsets satisfying an entropy condition. We give an extensive empirical evaluation of the performance of the methods both on synthetic and on real data. We also discuss the search for high-entropy subsets and the computation of the Vapnik-Chervonenkis dimension of the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.