Worldwide, Alzheimer’s disease (AD) is the most common neurodegenerative multifactorial disease influencing the elderly population. Nowadays, several medications, among them curcumin, are used in the treatment of AD. Curcumin, which is the principal component of Curcuma longa, has shown favorable effects forsignificantly preventing or treating AD. During the last decade, the scientific community has focused their research on the optimization of therapeutic properties and on the improvement of pharmacokinetic properties of curcumin. This review summarizes bibliographical data from 2009 to 2019 on curcumin analogues, derivatives, and hybrids, as well as their therapeutic, preventic, and diagnostic applications in AD. Recent advances in the field have revealed that the phenolic hydroxyl group could contribute to the anti-amyloidogenic activity. Phenyl methoxy groups seem to contribute to the suppression of amyloid-β peptide (Aβ42) and to the suppression of amyloid precursor protein (APP) andhydrophobic interactions have also revealed a growing role. Furthermore, flexible moieties, at the linker, are crucial for the inhibition of Aβ aggregation. The inhibitory activity of derivatives is increased with the expansion of the aromatic rings. The promising role of curcumin-based compounds in diagnostic imaging is highlighted. The keto-enol tautomerism seems to be a novel modification for the design of amyloid-binding agents. Molecular docking results, (Q)SAR, as well as in vitro and in vivo tests highlight the structures and chemical moieties that are correlated with specific activity. As a result, the knowledge gained from the existing research should lead to the design and synthesis ofinnovative and multitargetedcurcumin analogues, derivatives, or curcumin hybrids, which would be very useful drug and tools in medicine for both diagnosis and treatment of AD.
Eighteen 3-aryl-5-substituted-coumarins-six 5-acetyloxy-derivatives, six 5-hydroxyderivatives, and six 5-geranyloxy-derivatives-were synthesized, structurally characterized and their antioxidant activity, lipoxygenase inhibitory ability, as well as their cytotoxic activity against human neuroblastoma SK-N-SH and HeLa adenocarcinoma cell lines were evaluated. The 5-acetyloxy-compounds 3a-3f were found to be the best cytotoxic agents among all the compounds studied. The bromo-substituted coumarins 3a and 3b were remarkably active against HeLa cell line showing IC 50 1.8 and 6.1 μM, respectively. Coumarin 5e possessing a geranyloxy-chain on position 5 of the coumarin scaffold presented dual bioactivity, while 5-geranyloxy-coumarin 5f was the most competent soybean lipoxygenase inhibitor of this series (IC 50 10 μM). As shown by in silico docking studies, the studied molecules present allosteric interactions with soybean lipoxygenases.
The synthesis of the new hybrids followed a hybridization with the aid of hydroxy-benzotriazole (HOBT) and 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI.HCL) in dry DMF or thionyl chloride between curcumin analogues and cinnamic acid derivatives. IR, 1H-NMR, 13C-NMR, LC/MS ESI+, and elemental analysis were used for the confirmation of the structures of the novel hybrids. The lipophilicity values of compounds were calculated theoretically and experimentally via the reversed chromatography method as RM values. The novel derivatives were studied through in vitro experiments for their activity as antioxidant agents and as inhibitors of lipoxygenase, cyclooxygenase-2, and acetyl-cholinesterase. All the compounds showed satisfying anti-lipid peroxidation activity of linoleic acid induced by 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH). Hybrid 3e was the most significant pleiotropic derivative, followed by 3a. According to the predicted results, all hybrids could be easily transported, diffused, and absorbed through the blood–brain barrier (BBB). They presented good oral bioavailability and very high absorption with the exception of 3h. No inhibition for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 was noticed. According to the Ames test, all the hybrids induced mutagenicity with the exception of 3d. Efforts were conducted a) to correlate the in vitro results with the most important physicochemical properties of the structural components of the molecules and b) to clarify the correlation of actions among them to propose a possible mechanism of action. Docking studies were performed on soybean lipoxygenase (LOX) and showed hydrophobic interactions with amino acids. Docking studies on acetylcholinesterase (AChE) exhibited: (a) hydrophobic interactions with TRP281, LEU282, TYR332, PHE333, and TYR336 and (b) π-stacking interactions with TYR336.
Currently-used mechanical and biological heart valve prostheses have a satisfactory short-term performance, but may exhibit several major drawbacks on the long-term. Mechanical prostheses, based on carbon, metallic and polymeric components, require permanent anticoagulation treatment, and their usage often leads to adverse reactions, e.g. thromboembolic complications and endocarditis. In recent years, there is a need for a heart valve prosthesis that can grow, repair and remodel. The concept of tissue engineering offers good prospects into the development of such a device. An ideal scaffold should mimic the structural and purposeful profile of materials found in the natural extracellular matrix (ECM) architecture. The goal of this study was to develop cellulose acetate scaffolds (CA) for valve tissue regeneration. After their thorough physicochemical and biological characterization, a biofunctionalization process was made to increase the cell proliferation. Especially, the surface of scaffolds was amplified with functional molecules, such as RGD peptides (Arg-Gly-Asp) and YIGSRG laminins (Tyrosine-Isoleucine-Glycine-Serine-Arginine-Glycine) which immobilized through biotin-streptavidin bond, the strongest non-covalent bond in nature. Last step was to successfully coat an aortic metallic valve with CA biofunctionallized nanoscaffolds and cultivate cells in order to create an anatomical structure comparable to the native valve. Promising results have been obtained with CA-based nanoscaffolds. We found that cells grown successfully on the biofunctionalized valve surface thereby scaffolds that resemble the native tissues, elaborated with bioactive factors such as RGD peptides and laminins not only make the valve's surface biocompatible but also they could promote endothyliazation of cardiac valves causing an anti-coagulant effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.