This study was undertaken to determine whether the production of melatonin, a hormone regulating sleep in relation to the light/dark cycle, is altered in Huntington's disease. We analyzed the circadian rhythm of melatonin in a 24‐hour study of cohorts of control, premanifest, and stage II/III Huntington's disease subjects. The mean and acrophase melatonin concentrations were significantly reduced in stage II/III Huntington's disease subjects compared with controls. We also observed a nonsignificant trend toward reduced mean and acrophase melatonin in premanifest Huntington's disease subjects. Onset of melatonin rise was significantly more temporally spread in both premanifest and stage II/III Huntington's disease subjects compared with controls. A nonsignificant trend also was seen for reduced pulsatile secretion of melatonin. Melatonin concentrations are reduced in Huntington's disease. Altered melatonin patterns may provide an explanation for disrupted sleep and circadian behavior in Huntington's disease, and represent a biomarker for disease state. Melatonin therapy may help the sleep disorders seen in Huntington's disease. © 2014 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
BackgroundHuntington’s disease patients have a number of peripheral manifestations suggestive of metabolic and endocrine abnormalities. We, therefore, investigated a number of metabolic factors in a 24-hour study of Huntington’s disease gene carriers (premanifest and moderate stage II/III) and controls.MethodsControl (n = 15), premanifest (n = 14) and stage II/III (n = 13) participants were studied with blood sampling over a 24-hour period. A battery of clinical tests including neurological rating and function scales were performed. Visceral and subcutaneous adipose distribution was measured using magnetic resonance imaging. We quantified fasting baseline concentrations of glucose, insulin, cholesterol, triglycerides, lipoprotein (a), fatty acids, amino acids, lactate and osteokines. Leptin and ghrelin were quantified in fasting samples and after a standardised meal. We assessed glucose, insulin, growth hormone and cortisol concentrations during a prolonged oral glucose tolerance test.ResultsWe found no highly significant differences in carbohydrate, protein or lipid metabolism markers between healthy controls, premanifest and stage II/III Huntington’s disease subjects. For some markers (osteoprotegerin, tyrosine, lysine, phenylalanine and arginine) there is a suggestion (p values between 0.02 and 0.05) that levels are higher in patients with premanifest HD, but not moderate HD. However, given the large number of statistical tests performed interpretation of these findings must be cautious.ConclusionsContrary to previous studies that showed altered levels of metabolic markers in patients with Huntington’s disease, our study did not demonstrate convincing evidence of abnormalities in any of the markers examined. Our analyses were restricted to Huntington’s disease patients not taking neuroleptics, anti-depressants or other medication affecting metabolic pathways. Even with the modest sample sizes studied, the lack of highly significant results, despite many being tested, suggests that the majority of these markers do not differ markedly by disease status.
We introduce a new method to investigate postural instability in Parkinson's disease (PD) using computer-controlled motors to deliver precise pulls to the shoulders of subjects while standing. It mimics the clinical pull test but uses forces with unpredictable timing, direction, and magnitude. It revealed a number of balance control deficits in PD. Notably, the identified deficits were not significantly altered by levodopa medication, suggesting that disruption to nondopaminergic systems contributes to postural instability in PD.
Background: Huntington's Disease (HD) is a hereditary, progressive neurodegenerative disorder characterised by both neurological and systemic symptoms. In HD, immune changes can be observed before the onset of overt clinical features raising the possibility that inflammatory markers in plasma could be used to track disease progression. It has previously been demonstrated that a widespread, progressive innate immune response is detectable in plasma throughout the course of HD. Objective: The aim of the present study was to investigate the potential of several components of inflammation and innate immunity as plasma biomarkers in HD. Methods: We utilised antibody-based detection technologies as well as mass spectrometric quantification, multiple reaction monitoring (MRM-MS). Results: Levels of several markers previously described as altered in HD, such as clusterin, complement component 4, complement component 9 and ␣-2 macroglobulin did not differ between healthy controls and HD subjects as measured by Luminex, ELISA or MRM-MS. C-reactive protein was decreased in early HD, while the other immune markers tested were unaltered. Conclusions: Although only C-reactive protein was found to be reduced in early HD, some of the inflammatory markers measured correlated with clinical measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.