The Modified Blalock Taussig Shunt (MBTS) is one of the most common palliative operations in case of cyanotic heart diseases. Thus far, the decision on the position, size, and geometry of the implant relies on clinicians’ experience. In this paper, a Medical Digital Twin pipeline based on reduced order modeling is presented for fast and interactive evaluation of the hemodynamic parameters of MBTS. An infant case affected by complete pulmonary atresia was selected for this study. A three-dimensional digital model of the infant’s MBTS morphology was generated. A wide spectrum of MBTS geometries was explored by introducing twelve Radial Basis Function mesh modifiers. The combination of these modifiers allowed for analysis of various MBTS shapes. The final results proved the potential of the proposed approach for the investigation of significant hemodynamic features such as velocity, pressure, and wall shear stress as a function of the shunt’s morphology in real-time. In particular, it was demonstrated that the modifications of the MBTS morphology had a profound effect on the hemodynamic indices. The adoption of reduced models turned out to be a promising path to follow for MBTS numerical evaluation, with the potential to support patient-specific preoperative planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.