The COVID-19 (Coronavirus disease-2019) pandemic, caused by the SARS-CoV-2 coronavirus, is a significant threat to public health and the global economy. SARS-CoV-2 is closely related to the more lethal but less transmissible coronaviruses SARS-CoV-1 and MERS-CoV. Here, we have carried out comparative viral-human protein-protein interaction and viral protein localization analysis for all three viruses. Subsequent functional genetic screening identified host factors that functionally impinge on coronavirus proliferation, including Tom70, a mitochondrial chaperone protein that interacts with both SARS-CoV-1 and SARS-CoV-2 Orf9b, an interaction we structurally characterized using cryo-EM. Combining genetically-validated host factors with both COVID-19 patient genetic data and medical billing records identified important molecular mechanisms and potential drug treatments that merit further molecular and clinical study.
The Open Targets Platform (https://www.targetvalidation.org/) provides users with a queryable knowledgebase and user interface to aid systematic target identification and prioritisation for drug discovery based upon underlying evidence. It is publicly available and the underlying code is open source. Since our last update two years ago, we have had 10 releases to maintain and continuously improve evidence for target–disease relationships from 20 different data sources. In addition, we have integrated new evidence from key datasets, including prioritised targets identified from genome-wide CRISPR knockout screens in 300 cancer models (Project Score), and GWAS/UK BioBank statistical genetic analysis evidence from the Open Targets Genetics Portal. We have evolved our evidence scoring framework to improve target identification. To aid the prioritisation of targets and inform on the potential impact of modulating a given target, we have added evaluation of post-marketing adverse drug reactions and new curated information on target tractability and safety. We have also developed the user interface and backend technologies to improve performance and usability. In this article, we describe the latest enhancements to the Platform, to address the fundamental challenge that developing effective and safe drugs is difficult and expensive.
Predicting unconventional protein secretion is a much harder problem than predicting signal peptide-based protein secretion, both due to the small number of examples and due to the heterogeneity and the limited knowledge of the pathways involved, especially in eukaryotes. However, the idea that secreted proteins share certain properties regardless of the secretion pathway used made it possible to construct the prediction method SecretomeP in 2004. Here, we take a critical look at SecretomeP and its successors, and we also discuss whether multi-category subcellular location predictors can be used to predict unconventional protein secretion in eukaryotes. A new benchmark shows SecretomeP to perform much worse than initially estimated, casting doubt on the underlying hypothesis. On a more positive note, recent developments in machine learning may have the potential to construct new methods which can not only predict unconventional protein secretion but also point out which parts of a sequence are important for secretion. *REVISED Manuscript (text UNmarked) Click here to view linked References
The morphology of breast cancer cells is often used as an indicator of tumor severity and prognosis. Additionally, morphology can be used to identify more fine-grained, molecular developments within a cancer cell, such as transcriptomic changes and signalling pathway activity. Delineating the interface between morphology and signalling is important to understand the mechanical cues that a cell processes in order to undergo epithelial-to-mesenchymal transition and consequently metastasize. However, the exact regulatory systems that define these changes remain poorly characterized. In this study, we employ a network-systems approach to integrate imaging data and RNA-seq expression data. Our workflow allows the discovery of unbiased and context-specific gene expression signatures and cell signalling sub-networks relevant to the regulation of cell shape, rather than focusing on the identification of previously known, but not always representative, pathways. By constructing a cell-shape signalling network from shape-correlated gene expression modules and their upstream regulators, we found central roles for developmental pathways such as WNT and Notch as well as evidence for the fine control of NF-kB signalling by numerous kinase and transcriptional regulators. Further analysis of our network implicates a gene expression module enriched in the RAP1 signalling pathway as a mediator between the sensing of mechanical stimuli and regulation of NF-kB activity, with specific relevance to cell shape in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.