The detection of leakages in Water Distribution Networks (WDNs) is usually challenging and identifying their locations may take a long time. Current water leak detection methods such as model-based and measurement-based approaches face significant limitations that impact response times, resource requirements, accuracy, and location identification. This paper presents a method for determining locations in the WDNs that are vulnerable to leakage by combining six leakage-conditioning factors using logistic regression and vulnerability analysis. The proposed model considered three fixed physical factors (pipe length per junction, number of fittings per length, and pipe friction factor) and three varying operational aspects (drop in pressure, decrease in flow, and variations in chlorine levels). The model performance was validated using 13 district metered areas (DMAs) of the Sharjah Electricity and Water Authority (SEWA) WDN using ArcGIS. Each of the six conditioning factors was assigned a weight that reflects its contribution to leakage in the WDNs based on the Analytic Hierarchy Process (AHP) method. The highest weight was set to 0.25 for both pressure and flow, while 0.2 and 0.14 were set for the chlorine and number of fittings per length, respectively. The minimum weight was set to 0.08 for both length per junction and friction factor. When the model runs, it produces vulnerability to leakage maps, which indicate the DMAs’ vulnerability classes ranging from very high to very low. Real-world data and different scenarios were used to validate the method, and the areas vulnerable to leakage were successfully identified based on fixed physical and varying operational factors. This vulnerability map will provide a comprehensive understanding of the risks facing a system and help stakeholders develop and implement strategies to mitigate the leakage. Therefore, water utility companies can employ this method for corrective maintenance activities and daily operations. The proposed approach can offer a valuable tool for reducing water production costs and increasing the efficiency of WDN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.