Exploiting human mesenchymal stem cells (hMSCs) was proposed as a promising therapeutic approach for cardiovascular disease due to their capacity to differentiate into cardiac cells. Though modulation of the intracellular signaling pathways dominantly WNT/β catenin and transforming growth factor-β (TGF-β) have been reported to promote differentiation of hMSCs into cardiomyocytes in the prevailing literature, a safe and reproducible system for their clinical application has not yet turned into reality. In the present study, the molecular docking-based strategy was first applied for evaluating the potency of some natural phenolic compounds in the modulation of Wnt and TGF-β signaling pathways using a vital class of crystallographic protein structures of WNT signaling regulators such as Frizzled, Disheveled, GSK3-β, β-catenin, LRP 5/6 extracellular domain, Tankyrase and their variety of active pockets. Then, the impacts of plant-derived chemical compounds on the regulation of the relevant signals for the differentiation of hMSCs into the definitive mesoderm lineage and cardiac progenitors were assessed in vitro. Data obtained revealed the synergistic activity of Wnt and TGF-β superfamily to direct cardiac differentiation in human cardiogenesis by comparing cardiac gene expression in the presence and absence of the TGF-β inhibitors. We found that the inhibitory effect of canonical Wnt/βcatenin is sufficient to cause proper cardiomyocyte differentiation, but the TGF-β pathway plays a vital role in enhancing the expression of the cardiomyocytespecific marker (cTnT). It was found that quercetin, a p38MAPK inhibitor with the high energy dock to the active pocket of Wnt receptors, promotes cardiac differentiation via the inhibition of both Wnt and non-Smad TGF-β pathways.Altogether, data presented here can contribute to the development of a feasible and efficient cardiac differentiation protocol as an "off-the-shelf" therapeutic source using novel natural agents for cardiac repair or regeneration.
Aim: We investigated potential efficacy of autologous adipose-derived mesenchymal stem cell (MSC) on oxidative stress (OS) and airway remodeling in patients with chronic mustard lung. Patients & methods: Ten patients received 100 × 106 cells every 20 days for 4 injections over a 2-month period. Results: A gradual improvement was observed for 6 min walk test scores, pulmonary function tests and respiratory quality after MSCs therapy. A significant decrease was found for the mean levels of Mucin-1 protein (KL-6; p = 0.022) and Clara cell protein 16 (CC16; p = 0.005). Antioxidants had a tendency to be higher after each injection. Conclusion: Our findings revealed that MSCs therapy can be safely used for improvement of lung injury and regeneration in these patients without adverse effects. Trial registration number: NCT02749448 ( ClinicalTrials.gov )
Background and objectives: Recent investigations have reported more than 70 genetic syndromes involved in male infertility; however, the majority of these syndromes are extremely rare. We aimed to report the most common chromosomal abnormalities and associated rare genetic syndromes in the context of human male infertility. Materials and Methods: We performed a review of published articles considering the most common chromosomal aneuploidies and rare genetic syndromes associated with male infertility on PubMed, Web of Science, and Scopus. Results: Chromosomal abnormalities are frequently found in infertile men, with an incidence rate of 2-15%. The chromosomal aberrations include the sex and autosomal chromosome abnormalities, as well as numerical and structural defects in chromosomes. There are various rare genetic syndromes involved in male infertility that are caused by structural and numerical abnormalities in chromosomes. Klinefelter syndrome is the most common type of sex chromosome aneuploidy in infertile males. Besides, Y chromosome microdeletions, particularly in azoospermia factor regions, serve as the second most common genetic cause of impaired spermatogenetic in infertile men. These molecular genetic abnormalities not only can be inherited, but also they may transmit to the next generation through assisted reproductive techniques and result in the birth of boys with higher risk of congenital abnormalities and infertility. Despite the normal secondary male sexual characteristics, some patients are azoospermic or severe oligozoospermic men. Therefore, identification of these molecular genetic factors and rare genetic disorders is essential in men with unexplained infertility. Discussion and conclusion: Since most of molecular genetic abnormalities can be transmitted to the next generation, identification of these rare genetic disorders is crucial for men with unexplained infertility. It is also essential for clinicians and physicians of reproductive medicine and andrologists to initiate genetic evaluation, aneuploidy screening and counseling prior to any therapeutic procedures.
Having biological children remains an unattainable dream for most couples with reproductive failure or gonadal dysgenesis. The combination of stem cells with gene editing technology and organ-on-a-chip models provides unique opportunity for infertile patients with impaired gametogenesis caused by congenital disorders in sex development or cancer survivors. But, how will these technologies overcome human infertility? This review discusses the regenerative mechanisms, applications and advantages of different types of stem cells for restoring gametogenesis in infertile patients, as well as major challenges that must be overcome prior to clinical application. The importance and limitations of in vitro generation of gametes from patient-specific human induced pluripotent stem cells (hiPSCs) will be discussed in the context of human reproduction. The potential role of organ-on-a-chip models that can direct differentiation of hiPSCs-derived primordial germ cell-like cells to gametes and other reproductive organoids is also explored. These rapidly evolving technologies provide future prospects for improving fertility to individuals and couples who experience reproductive failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.