To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among Ϸ4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from bacteria with small genomes. Unexpectedly, most genes involved in the Embden-Meyerhof-Parnas pathway are essential. Identification of unknown and unexpected essential genes opens research avenues to better understanding of processes that sustain bacterial life.
Within the framework of the international project ' The functional analysis of the Bacillus subtilis genome ' in Japan and Europe, the gene expression and transcription organization of the gntZ-ywaA region (160 kb) of the B. subtilis genome has been systematically analysed. First, all unanalysed genes comprising more than 80 amino acids (125 genes) in this region were inactivated through integration of plasmid pMUTIN. No essential gene was found which could not be inactivated. All the integrants grew normally in both nutrient sporulation medium and glucose minimal medium. But an integrant in the yxbG gene exhibited an oligosporogenic phenotype in the nutrient sporulation medium. The synthesis of β-galactosidase was examined, as a reporter for expression of the inactivated genes, during growth and sporulation in the two media. The results indicated that 36 % of the promoters were inactive when cells were grown in at least one of these two media. Furthermore, the transcription of the 119 genes in this region was analysed by Northern blotting, resulting in a transcription map. The results indicate that the gntZ-ywaA region contains at least 24 polycistronic operons, including several published ones. The operons newly found in this work are yxaAB, yxaGH, yxaJKL, yxbBA-yxnB-asnH-yxaM, yxbCD, yxcED, yxdJK, yxeFGH, yxeKLMNOPQ, yxeR-yxxB, hutPHUIGM, bglPH-yxiE, wapA-yxxG, yxiM-deaD, katB-yxiS, yxjCDEF, yxjJI and yxkF-mmsX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.