BACKGROUND Delayed cerebral vasospasm is a feared complication of aneurysmal subarachnoid hemorrhage (SAH). OBJECTIVE To investigate the relationship of systemic inflammation, measured using the systemic immune-inflammation (SII) index, with delayed angiographic or sonographic vasospasm. We hypothesize that early elevations in SII index serve as an independent predictor of vasospasm. METHODS We retrospectively reviewed the medical records of 289 SAH patients for angiographic or sonographic evidence of delayed cerebral vasospasm. SII index [(neutrophils × platelets/lymphocytes)/1000] was calculated from laboratory data at admission and dichotomized based on whether or not the patient developed vasospasm. Multivariable logistic regression and receiver operating characteristic (ROC) analysis were performed to determine the ability of SII index to predict the development of vasospasm. RESULTS A total of 246 patients were included in our study, of which 166 (67.5%) developed angiographic or sonographic evidence of cerebral vasospasm. Admission SII index was elevated for SAH in patients with vasospasm compared to those without (P < .001). In univariate logistic regression, leukocytes, neutrophils, lymphocytes, neutrophil-lymphocyte ratio (NLR), and SII index were associated with vasospasm. After adjustment for age, aneurysm location, diabetes mellitus, hyperlipidemia, and modified Fisher scale, SII index remained an independent predictor of vasospasm (odds ratio 1.386, P = .003). ROC analysis revealed that SII index accurately distinguished between patients who develop vasospasm vs those who do not (area under the curve = 0.767, P < .001). CONCLUSION Early elevation in SII index can independently predict the development of delayed cerebral vasospasm in aneurysmal SAH.
SignificanceNetworks of neurons need to reliably encode and replay patterns and sequences of activity. In the brain, sequences of spatially coding neurons are replayed in both the forward and reverse direction in time with respect to their order in recent experience. As of yet there is no network-level or biophysical mechanism known that can produce both modes of replay within the same network. Here we propose that resonance, a property of neurons, paired with subthreshold oscillations in neural input facilitate network-level learning of fixed and sequential activity patterns and lead to both forward and reverse replay.
Purpose Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have been demonstrated to possess great potential in preclinical models. An efficient biomanufacturing platform is necessary for scale up production for clinical therapeutic applications. The aim of this study is to investigate the potential differences in neuro-regenerative properties of MSC-derived EVs generated in 2D versus 3D culture systems. Method Human bone marrow MSCs (BM-MSCs) were cultured in 2D monolayer and 3D bioreactor systems. EVs were isolated using ultracentrifugation followed by size and concentration measurements utilizing dynamic light scattering (NanoSight) and by fluorescence staining (ExoView). Mouse trigeminal ganglia (TG) neurons were isolated from BALB/c mice and cultured in the presence or absence of EVs derived from 2D or 3D culture systems. Neuronal growth and morphology were monitored over 5 days followed by immunostaining for β3 tubulin. Confocal images were analyzed by Neurolucida software to obtain the density and length of the neurites. Results The NanoSight tracking analysis revealed a remarkable increase (24-fold change) in the concentration of EVs obtained from the 3D versus 2D culture condition. ExoView analysis showed a significantly higher concentration of CD63, CD81, and CD9 markers in the EVs derived from 3D versus 2D conditions. Furthermore, a notable shift toward a more heterogeneous phenotype was observed in the 3D-derived EVs compared to those from 2D culture systems. EVs derived from both culture conditions remarkably induced neurite growth and elongation after 5 days in culture compared to untreated control. Neurolucida analysis of the immunostaining images (β3 tubulin) showed a significant increase in neurite length in TG neurons treated with 3D- versus 2D-derived EVs (3301.5 μm vs. 1860.5 μm, P < 0.05). Finally, Sholl analysis demonstrated a significant increase in complexity of the neuronal growth in neurons treated with 3D- versus 2D-derived EVs (P < 0.05). Conclusion This study highlights considerable differences in EVs obtained from different culture microenvironments, which could have implications for their therapeutic effects and potency. The 3D culture system seems to provide a preferred environment that modulates the paracrine function of the cells and the release of a higher number of EVs with enhanced biophysical properties and functions in the context of neurite elongation and growth.
The protective function and transparency provided by the corneal epithelium are dependent on and maintained by the regenerative capacity of limbal epithelial stem cells (LESCs). These LESCs are supported by the limbal niche, a specialized microenvironment consisting of cellular and non-cellular components. Disruption of the limbal niche, primarily from injuries or inflammatory processes, can negatively impact the regenerative ability of LESCs. Limbal stem cell deficiency (LSCD) directly hampers the regenerative ability of the corneal epithelium and allows the conjunctival epithelium to invade the cornea, which results in severe visual impairment. Treatment involves restoring the LESC population and functionality; however, few clinically practiced therapies currently exist. This review outlines the current understanding of the limbal niche, its pathology and the emerging approaches targeted at restoring the limbal niche. Most emerging approaches are in developmental phases but show promise for treating LSCD and accelerating corneal regeneration. Specifically, we examine cell-based therapies, bio-active extracellular matrices and soluble factor therapies in considerable depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.