SummaryWe have analysed the function of a gene of Bacillus subtilis, the product of which shows significant homology with eukaryotic SMC proteins essential for chromosome condensation and segregation. Two mutant strains were constructed; in one, the expression was under the control of the inducible spac promoter (conditional null) and, in the other, the gene was disrupted by insertion (disrupted null). Both could form colonies at 23ЊC but not at 37ЊC in the absence of the expression of the Smc protein, indicating that the B. subtilis smc gene was essential for cell growth at higher temperatures. Microscopic examination revealed the formation of anucleate and elongated cells and diffusion of nucleoids within the elongated cells in the disrupted null mutant grown at 23ЊC and in the conditional null mutant grown in low concentrations of IPTG at 37ЊC. In addition, immunofluorescence microscopy showed that subcellular localization of the Spo0J partition protein was irregular in the smc disrupted null mutant, compared with bipolar localization in wild-type cells. These results indicate that the B. subtilis smc gene is essential for chromosome partition. The role of B. subtilis Smc protein in chromosome partition is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.