Mitochondrial dysfunction is associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as neurodegeneration. How these lesions give rise to diverse pathology is not well understood, partly because their proximal consequences have not been well-studied in mammalian cells. Here we provide two lines of evidence that mitochondrial respiratory chain dysfunction leads to alterations in one-carbon metabolism pathways. First, using hypothesis-generating metabolic, proteomic, and transcriptional profiling, followed by confirmatory experiments, we report that mitochondrial DNA depletion leads to an ATF4-mediated increase in serine biosynthesis and transsulfuration. Second, we show that lesioning the respiratory chain impairs mitochondrial production of formate from serine, and that in some cells, respiratory chain inhibition leads to growth defects upon serine withdrawal that are rescuable with purine or formate supplementation. Our work underscores the connection between the respiratory chain and one-carbon metabolism with implications for understanding mitochondrial pathogenesis.DOI:
http://dx.doi.org/10.7554/eLife.10575.001
Parkinson's disease is one of the major neurodegenerative disorders. Neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can cause Parkinson's disease-like symptoms and biochemical changes in humans and animals. Hydrogen sulfide (H(2)S) has been shown to protect neurons. The goal of this study was to examine the effects of inhaled H(2)S in a mouse model of Parkinson's disease induced by MPTP. Male C57BL/6J mice received MPTP at 80 mg/kg and breathed air with or without 40 ppm H(2)S for 8 h/day for 7 days. Administration of MPTP induced movement disorder and decreased tyrosine hydroxylase (TH)-containing neurons in the substantia nigra and striatum in mice that breathed air. Inhalation of H(2)S prevented the MPTP-induced movement disorder and the degeneration of TH-containing neurons. Inhaled H(2)S also prevented apoptosis of the TH-containing neurons and gliosis in nigrostriatal region after administration of MPTP. The neuroprotective effect of inhaled H(2)S after MPTP administration was associated with upregulation of genes encoding antioxidant proteins, including heme oxygenase-1 and glutamate-cysteine ligase. These observations suggest that inhaled H(2)S prevents neurodegeneration in a mouse model of Parkinson's disease induced by MPTP, potentially via upregulation of antioxidant defense mechanisms and inhibition of inflammation and apoptosis in the brain.
Aims: The role of hydrogen sulfide (H 2 S) in endotoxin (lipopolysaccharide [LPS])-induced inflammation is incompletely understood. We examined the impact of H 2 S breathing on LPS-induced changes in sulfide metabolism, systemic inflammation, and survival in mice. Results: Mice that breathed air alone exhibited decreased plasma sulfide levels and poor survival rate at 72 h after LPS challenge. Endotoxemia markedly increased alanine aminotransferase (ALT) activity and nitrite/nitrate (NOx) levels in plasma and lung myeloperoxidase (MPO) activity in mice that breathed air. In contrast, breathing air supplemented with 80 ppm of H 2 S for 6 h after LPS challenge markedly improved survival rate compared to mice that breathed air alone ( p < 0.05). H 2 S breathing attenuated LPS-induced increase of plasma ALT activity and NOx levels and lung MPO activity. Inhaled H 2 S suppressed LPS-induced upregulation of inflammatory cytokines, while it markedly induced antiinflammatory interleukin (IL)-10 in the liver. Beneficial effects of H 2 S inhalation after LPS challenge were associated with restored sulfide levels and markedly increased thiosulfate levels in plasma. Increased thiosulfate levels after LPS challenge were associated with upregulation of rhodanese, but not cystathionine-c-lyase (CSE), in the liver. Administration of sodium thiosulfate dose-dependently improved survival after LPS challenge in mice. Innovation: By measuring changes in plasma levels of sulfide and sulfide metabolites using an advanced analytical method, this study revealed a critical role of thiosulfate in the protective effects of H 2 S breathing during endotoxemia. Conclusion: These observations suggest that H 2 S breathing prevents inflammation and improves survival after LPS challenge by altering sulfide metabolism in mice. Antioxid. Redox Signal. 17, 11-21.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.