The hydrodynamic performance of a dual-rotor horizontal axis marine turbine (HAMCT) is investigated for the power gain in operating the rear rotor without blade-pitch control. This kind of turbine can be advantageous for a rectilinear tidal current of reversing directions, where each rotor blade is optimally fixed-pitched towards its upstream velocity. The blade element momentum (BEM) method is coupled with the Park wake model. A generic three-blade turbine is shown to gain up to 20% in the coefficient of power CP as relative to the front rotor CP when operating the rear rotor at the same tip speed ratio (TSR) as the front one, gaining overall CP up to 0.55. Analytic model is derived to backup the estimate of power gain. Plots for turbine performance variation with TSR and profile hydrodynamic efficiency are given, and analysed for lab and small-medium size turbines.
The islands in the Indian Ocean as other remote islands are often challenged to meet their energy needs, and constantly getting electricity from the mainland is expensive. In this article, the present scenario and future prospects of the energy sources for all the Indian islands are discussed. Data collected from different buoys of INCOIS are analysed, and a location near Minicoy has been chosen for further study. This paper also provides the preliminary analysis of marine current energy feasibility in that location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.