Microalgae are diverse microorganisms inhabiting a wide range of habitats with only a small fraction being cultivated for human use. Recently, interest in microalgal research has increased in the quest for alternative renewable fuels due to possible depletion of fossil fuels in the near future. However, costly downstream processing has hampered the commercialization of biofuels derived from microalgae. Several value added products of industrial, pharmaceutical and agricultural relevance could be simultaneously derived from microalgae during bioenergy production. Despite these value-added products having the potential to offset the high cost of downstream processing of renewable fuels, their production has not been explored in-depth. This review presents a critical overview of the current state of biotechnological applications of microalgae for human benefit and highlights possible areas for further research and development.
In this study, we evaluated the impact of treated wastewater effluent from two wastewater treatment plants on the physicochemical parameters and Salmonella spp. load of receiving rivers. Presumptive Salmonella spp. were obtained at all sampled points including the discharge points, with counts ranging from 0 to 4.14 log cfu/mL at both plants. Turbidity, chemical and biological oxygen demand were found to be high and mostly above the required limit for treated wastewater discharge. However, recorded nitrate and phosphate values were very low. Of the 200 confirmed Salmonella spp. isolates recovered from the treated effluent and receiving surface waters, 93% harbored the spiC gene, 84% harbored the misL gene, and 87.5% harbored the orfL gene while 87% harbored the pipD gene. The antibiotic resistance profile revealed that the isolates were resistant to sulfamethoxazole, nalidixic acid and streptomycin, but susceptible to quinolones and third generation β-lactams. These results indicate that in South Africa treated effluents are still a major source of contamination of rivers with pathogens such as Salmonella. Appropriate steps by the regulatory authorities and workers at the treatment plants are needed to enforce stipulated guidelines in order to prevent pollution of surface water resources due to the discharge of poorly treated effluents.
Microalgae are promising feedstock to produce biodiesel and other value added products. However, the water footprint for producing microalgal biodiesel is enormous and would put a strain on the water resources of water stressed countries like South Africa if freshwater is used without recycling. This study evaluates the utilization of pre-chlorinated wastewater as a cheap growth media for microalgal biomass propagation with the aim of producing biodiesel whilst simultaneously remediating the wastewater. Wastewater was collected from two wastewater treatment plants (WWTPs) in Durban, inoculated with Neochloris aquatica and Asterarcys quadricellulare and the growth kinetics monitored for a period of 8 days. The physicochemical parameters; including chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were determined before microalgal cultivation and after harvesting. Total lipids were quantified gravimetrically after extraction by hexane/isopropanol (3:2 v/v). Biodiesel was produced by transesterification and characterised by gas chromatography. The total carbohydrate was extracted by acid hydrolysis and quantified by spectrophotometric method based on aldehyde functional group derivatization. Asterarcys quadricellulare utilized the wastewater for growth and reduced the COD of the wastewater effluent from the Umbilo WWTP by 12.4%. Total nitrogen (TN) and phosphorus (TP) were reduced by 48% and 50% respectively by Asterarcys quadricellulare cultivated in sterile wastewater while, Neochloris reduced the TP by 37% and TN by 29%. Although the highest biomass yield (460 mg dry weight) was obtained for Asterarcys, the highest amount of lipid (14.85 ± 1.63 mg L −1 ) and carbohydrate (14.84 ± 0.1 mg L −1 ) content were recorded in Neochloris aquatica. The dominant fatty acids in the microalgae were palmitic acid (C16:0), stearic acid (C18:0) and oleic acid (C18:1). The biodiesel produced was determined to be of good quality with high oxidation stability and low viscosity, and conformed to the American society for testing and materials (ASTM) guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.