Readily available moisture in the root zone is very important for optimum plant growth. The available techniques to determine soil moisture content have practical limitations owing to their high cost, dependence on labor, and time consumption. We have developed a prototype for automated soil moisture monitoring using a low-cost capacitive soil moisture sensor (SKU:SEN0193) for data acquisition, connected to the internet. A soil-specific calibration was performed to integrate the sensor with the automated soil moisture monitoring system. The accuracy of the soil moisture measurements was compared with those of a gravimetric method and a well-established soil moisture sensor (SM-200, Delta-T Devices Ltd, Cambridge, UK). The root-mean-square error (RMSE) of the soil water contents obtained with the SKU:SEN0193 sensor function, the SM-200 manufacturer’s function, and the SM-200 soil-specific calibration function were 0.09, 0.07, and 0.06 cm3 cm−3, for samples in the dry to saturated range, and 0.05, 0.08, and 0.03 cm3 cm−3, for samples in the field capacity range. The repeatability of the measurements recorded with the developed calibration function support the potential use of the SKU:SEN0193 sensor to minimize the risk of soil moisture stress or excess water application.
Systems that are made of several low-cost gas sensors with automatic gas sampling may have the potential to serve as reliable fast methane analyzers. However, there is a lack of reports about such types of systems evaluated under field conditions. Here, we developed a continuous methane monitoring system with automated gas sampling unit using low-cost gas sensors, TGS 2611 and MQ-4, that use a simple cloud-based data acquisition platform. We verified the consistency, repeatability, and reproducibility of the data obtained by TGS 2611 and MQ-4 low-cost gas sensors by measuring high- and low-concentration methane samples. The normalized root-mean-square errors (NRMSEs) of the samples with high methane concentrations, [CH4] of 3, 4, 6, and 7%, were 0.0788, 0.0696, 0.1198, and 0.0719 for the TGS 2611 sensor, respectively, and were confirmed using a gas chromatograph as a reference analyzer. The NRMSEs of the samples with low [CH4] of 0.096, 0.145, 0.193, and 0.241% measured by the TGS 2611 sensor were 0.0641, 0.1749, 0.0157, and 0.1613, whereas those NRMSEs of the same concentrations measured by the MQ-4 sensor were 0.3143, 0.5766, 0.6301, and 0.6859, respectively. Laboratory-scale anaerobic digesters were tested using the developed system. The anaerobic digesters were continuously operated for 2 months, demonstrating the potential use of sensors for detecting and monitoring methane in the field level application. This study utilized a unique way to combine the advantages of low-cost sensors and develop a reliable monitoring system by minimizing drawbacks of low-cost sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.