The dispersion relation for surface plasma waves (SPWs) over a diffuse plasma layer is investigated in this paper. The layer is modeled by a stepwise profile. The phase velocity of an SPW increases sharply at larger layer thicknesses as well as at higher values of plasma density. The SPW can be resonantly excited by a laser when the upper layer has a surface ripple with a wave number comparable to the wave number of the SPW.
The performance of railgap switch critically relies upon multichannel breakdown between the extended electrodes (rails) in order to ensure distributed current transfer along electrode length and to minimize the switch inductance. The initiation of several simultaneous arc channels along the switch length depends on the gap triggering technique and on the rate at which the electric field changes within the gap. This paper presents design, construction, and output characteristics of a coaxial cable based three-stage transmission line transformer (TLT) that is capable of initiating multichannel breakdown in a high voltage, low inductance railgap switch. In each stage three identical lengths of URM67 coaxial cables have been used in parallel and they have been wounded in separate cassettes to enhance the isolation of the output of transformer from the input. The cascaded output impedance of TLT is ~50 Ω. Along with multi-channel formation over the complete length of electrode rails, significant reduction in jitter (≤2 ns) and conduction delay (≤60 ns) has been observed by the realization of large amplitude (~80 kV), high dV/dt (~6 kV/ns) pulse produced by the indigenously developed TLT based trigger generator. The superior performance of TLT over conventional pulse transformer for railgap triggering application has been compared and demonstrated experimentally.
The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.