BackgroundRegulator of chromosome condensation 1 (RCC1) is the guanine nucleotide exchange factor for Ran GTPase. Localised generation of Ran-GTP by RCC1 on chromatin is critical for nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. Both the N-terminal tail of RCC1 and its association with Ran are important for its interaction with chromatin in cells. In vitro, the association of Ran with RCC1 induces a conformational change in the N-terminal tail that promotes its interaction with DNA.ResultsWe have investigated the mechanism of the dynamic interaction of the α isoform of human RCC1 (RCC1α) with chromatin in live cells using fluorescence recovery after photobleaching (FRAP) of green fluorescent protein (GFP) fusions. We show that the N-terminal tail stabilises the interaction of RCC1α with chromatin and this function can be partially replaced by another lysine-rich nuclear localisation signal. Removal of the tail prevents the interaction of RCC1α with chromatin from being stabilised by RanT24N, a mutant that binds stably to RCC1α. The interaction of RCC1α with chromatin is destabilised by mutation of lysine 4 (K4Q), which abolishes α-N-terminal methylation, and this interaction is no longer stabilised by RanT24N. However, α-N-terminal methylation of RCC1α is not regulated by the binding of RanT24N. Conversely, the association of Ran with precipitated RCC1α does not require the N-terminal tail of RCC1α or its methylation. The mobility of RCC1α on chromatin is increased by mutation of aspartate 182 (D182A), which inhibits guanine-nucleotide exchange activity, but RCC1αD182A can still bind nucleotide-free Ran and its interaction with chromatin is stabilised by RanT24N.ConclusionsThese results show that the stabilisation of the dynamic interaction of RCC1α with chromatin by Ran in live cells requires the N-terminal tail of RCC1α. α-N-methylation is not regulated by formation of the binary complex with Ran, but it promotes chromatin binding through the tail. This work supports a model in which the association of RCC1α with chromatin is promoted by a conformational change in the α-N-terminal methylated tail that is induced allosterically in the binary complex with Ran.
Genomic alteration in head and neck squamous cell carcinoma (HNSCC) was studied in two cell line pairs (HN30-HN31 and HN4-HN12) using conventional C-banding, multiplex fluorescence in situ hybridization (M-FISH), and array comparative genomic hybridization (array CGH). HN30 and HN4 were derived from primary lesions in the pharynx and base of tongue, respectively, and HN31 and HN12 were derived from lymph-node metastatic lesions belonging to the same patients. Gain of chromosome 1, 7, and 11 were shared in almost all cell lines. Hierarchical clustering revealed that HN31 was closely related to HN4, which shared eight chromosome alteration cases. Large C-positive heterochromatins were found in the centromeric region of chromosome 9 in HN31 and HN4, which suggests complex structural amplification of the repetitive sequence. Array CGH revealed amplification of 7p22.3p11.2, 8q11.23q12.1, and 14q32.33 in all cell lines involved with tumorigenesis and inflammation genes. The amplification of 2p21 (SIX3), 11p15.5 (H19), and 11q21q22.3 (MAML2, PGR, TRPC6, and MMP family) regions, and deletion of 9p23 (PTPRD) and 16q23.1 (WWOX) regions were identified in HN31 and HN12. Interestingly, partial loss of PTPRD (9p23) and WWOX (16q23.1) genes was identified in HN31 and HN12, and the level of gene expression tended to be the down-regulation of PTPRD, with no detectable expression of the WWOX gene. This suggests that the scarcity of PTPRD and WWOX genes might have played an important role in progression of HNSCC, and could be considered as a target for cancer therapy or a biomarker in molecular pathology.
Background Oral cancer is often preceded by a mucosal lesion called an oral potentially malignant disorder (OPMD). Many plant-derived compounds are of value in medicine. The objectives of this study were to develop a soluble mucoadhesive film containing α-mangostin (α-MG), a compound extracted from the peel of mangosteen fruit, and determine its activities against oral cancer cells, against human papillomavirus type 16 (HPV-16) pseudovirus, and its anti-inflammatory properties. Methods A soluble mucoadhesive film containing α-MG was prepared. Oral squamous carcinoma cell line (SCC25), murine macrophage cells (RAW264.7), and human gingival fibroblast cell line were cultured. Anticancer activity and viability of SCC25 cells in response to α-MG film solution were determined by MTT assay. HPV-16 pseudovirus was constructed and effects of the film solution on attachment and post-attachment steps of the infection were investigated. Anti-inflammatory activity was assessed by nitric oxide (NO) inhibition. Fibroblast cell migration was determined by in vitro scratch assay. Results The soluble α-MG film showed cytotoxic effects on SCC25 cells in concentration > 125 µg/ml with IC50 of 152.5 µg/ml. Antiviral activity against HPV-16 pseudovirus was observed at attachment step, but not at post-attachment step. The film also possessed a strong anti-inflammatory effect and promoted wound healing without cytotoxicity. Conclusions Mucoadhesive film containing α-MG has a cytotoxic effect on oral squamous carcinoma cell line and an inhibitory effect on HPV-16 pseudovirus at attachment step. The α-MG film also shows a potent anti-inflammatory activity and enhances wound healing. Thus, the soluble α-MG film may have a potential role in treating oral cancer.
Objective: Many studies suggested that fucoidan has anticancer potential. The objective of the present study was to determine the cytotoxic effects and mechanism of cell death induced by fucoidan extracted from Fucus vesiculosus on HSC-3 oral squamous cell carcinoma. Methods: HSC-3 cells were treated with 0, 100, 200, and 400 μg/mL of fucoidan. Cell viability was measured using MTT assay. Apoptosis and cell cycle were measured with a flow cytometry-based assay. Chromatin condensation and nuclear fragmentation were determined using Hoechst 33342 staining. Mitochondrial membrane potential (ΔΨm) was determined using the JC-1 kit. The apoptotic, anti-apoptotic, and autophagic markers study were done by western blot analysis. Results: the viable cell number of treated HSC-3 cells was decreased. Moreover, treated cells were arrested in the G0/G1 phase. Annexin V/PI staining revealed that fucoidan could induce apoptosis in HSC-3 cells. Western blot analysis suggested the up-regulation of apoptotic markers including cleaved caspase-3, cleaved PARP, Bax, and autophagic markers including LC3-II and Beclin-1 but downregulation of anti-apoptotic markers, Bcl-2. Fucoidan could disturb ΔΨm and induce chromatin condensation with nuclear fragmentation. Conclusion: fucoidan has potential in anticancer properties against HSC-3 cells manifested by the induction of apoptosis, cell cycle arrest, and autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.