In intelligent transportation systems, an important task is to provide a highly efficient communication channel between vehicles and other infrastructure objects that meets energy efficiency requirements and involves low time delays. The paper presents a method for generating synthetic data of the “vehicle-to-infrastructure” system, capable of simulating many scenarios of traffic situations to increase the generalizing ability of an intelligent beamsteering algorithm. The beamsteering algorithm is based on gradient boosting and is designed to connect and track vehicles with minimal delays without relying on GNSS coordinates. The predictors for the applied machine learning algorithm were: the relief, vehicle type, direction of movement and speed, timestamps, and the received signal power level. The generated dataset included the traffic model based on the Lighthill–Whitham–Richards macroscopic model and SUMO software package simulations. Simulation results showed 94% accuracy in correctly identified positions for the main lobe according to vehicle behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.