Recent studies have demonstrated that breast milk contains a population of cells displaying many of the properties typical of stem cells. This review outlines progress made in this newly emerging field of stem cell biology and provides an analysis of the available data on purification, propagation and differentiation of certain types of progenitor cells from breast milk. The possible fates of breast milk cells, including microchimerism caused by their transmission to the distant organs of the infant, are also discussed. Unique properties of breast milk-derived stem cells, such as their unusually low tumorigenic potential and their negligible ability to form teratomas, are highlighted as obvious advantages for using these cells in regenerative therapy.
Genetic mutations in FUS, a DNA/RNA‐binding protein, are associated with inherited forms of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). A novel transgenic FUS[1‐359]‐tg mouse line recapitulates core hallmarks of human ALS in the spinal cord, including neuroinflammation and neurodegeneration, ensuing muscle atrophy and paralysis, as well as brain pathomorphological signs of FTLD. However, a question whether FUS[1‐359]‐tg mouse displays behavioural and brain pro‐inflammatory changes characteristic for the FTLD syndrome was not addressed. Here, we studied emotional, social and cognitive behaviours, brain markers of inflammation and plasticity of pre‐symptomatic FUS[1‐359]‐tg male mice, a potential FTLD model. These animals displayed aberrant behaviours and altered brain expression of inflammatory markers and related pathways that are reminiscent to the FTLD‐like syndrome. FTLD‐related behavioural and molecular Journal of Cellular and Molecular Medicine features were studied in the pre‐symptomatic FUS[1‐359]‐tg mice that received standard or new ALS treatments, which have been reported to counteract the ALS‐like syndrome in the mutants. We used anti‐ALS drug riluzole (8 mg/kg/d), or anti‐inflammatory drug, a selective blocker of cyclooxygenase‐2 (celecoxib, 30 mg/kg/d) for 3 weeks, or a single intracerebroventricular (i.c.v.) infusion of human stem cells (Neuro‐Cells, 500 000‐CD34+), which showed anti‐inflammatory properties. Signs of elevated anxiety, depressive‐like behaviour, cognitive deficits and abnormal social behaviour were less marked in FUS‐tg–treated animals. Applied treatments have normalized protein expression of interleukin‐1β (IL‐1β) in the prefrontal cortex and the hippocampus, and of Iba‐1 and GSK‐3β in the hippocampus. Thus, the pre‐symptomatic FUS[1‐359]‐tg mice demonstrate FTLD‐like abnormalities that are attenuated by standard and new ALS treatments, including Neuro‐Cell preparation.
Multiple clinical and experimental evidences suggest that amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are members of a disease continuum. Pathological inclusions of fused in sarcoma (FUS) protein have been observed in subsets of patients with these diseases but their anatomical distribution is different for two diseases. These structures are present in motor neurons in ALS cases but in cortical neurons in FTLD cases. Expression of a C‐terminally truncated form of human FUS causes an early onset and progressive motor neuron pathology in transgenic mice but only when these neurons express a certain level of this protein. Severe motor dysfunction and early lethality of mice with expression above this level prevent their use for studies of FTLD‐related pathology caused by expression of this form of FUS. In the present study, we used another line of mice expressing the same protein but not developing any signs of motor system dysfunction due to substantially lower level of transgene expression in motor neurons. In a set of tests 5‐month old mice displayed certain behavioural abnormalities, including increased impulsivity, decreased anxiety and compromised social interaction, which recapitulate behaviour characteristics typically seen in FTLD patients.
Mutations in a gene encoding RNA-binding protein FUS was linked to familial forms of amyotrophic lateral sclerosis (ALS). C-terminal truncations of FUS are associated with aggressive forms of ALS. However, motor neurons are able to tolerate permanent production of pathogenic truncated form of FUS protein until its accumulation in the cytoplasm of neurones does not reach a critical threshold.In order to identify how the nervous system responds to pathogenic variants of FUS we produced and characterised a mouse line, L-FUS[1-359], with a low level of neuronal expression of a highly aggregation prone and pathogenic form of C-terminally truncated FUS. In contrast to mice with substantially higher level of expression of the same FUS variant that develop severe early onset motor neuron pathology, L-FUS[1-359] mice do not develop any sign of pathology even at old age.Nevertheless, we detected substantial changes in the spinal cord transcriptome of these mice comparing to the wild type littermates. We suggest that at least some of these changes reflect activation of cellular mechanisms compensating to potentially damaging effect of pathogenic FUS production. Further studies of these mechanism might reveal effective target for therapy of FUS-ALS and possibly, other forms of ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.