Aegilops tauschii Boiss. is polyploid grass species that grows in the eastern part of the Fertile Crescent, Afghanistan, and Middle Asia. It consists of tetraploid (4x) and hexaploid (6x) cytotypes (2n = 4x = 28, D1D (Abdolmalaki et al., 2019) XcrXcr and 2n = 6x = 42, D1D (Abdolmalaki et al., 2019) XcrXcrD2D (Adams and Wendel, 2005), respectively) that are similar morphologically. Although many Aegilops species were used in wheat breeding, the genetic potential of Ae. crassa has not yet been exploited due to its uncertain origin and significant genome modifications. Tetraploid Ae. crassa is thought to be the oldest polyploid Aegilops species, the subgenomes of which still retain some features of its ancient diploid progenitors. The D1 and D2 subgenomes of Ae. crassa were contributed by Aegilopstauschii (2n = 2x = 14, DD), while the Xcr subgenome donor is still unknown. Owing to its ancient origin, Ae. crassa can serve as model for studying genome evolution. Despite this, Ae. crassa is poorly studied genetically and no genome sequences were available for this species. We performed low-coverage genome sequencing of 4x and 6x cytotypes of Ae. crassa, and four Ae. tauschii accessions belonging to different subspecies; diploid wheatgrass Thinopyrum bessarabicum (Jb genome), which is phylogenetically close to D (sub)genome species, was taken as an outgroup. Subsequent data analysis using the pipeline RepeatExplorer2 allowed us to characterize the repeatomes of these species and identify several satellite sequences. Some of these sequences are novel, while others are found to be homologous to already known satellite sequences of Triticeae species. The copy number of satellite repeats in genomes of different species and their subgenome (D1 or Xcr) affinity in Ae. crassa were assessed by means of comparative bioinformatic analysis combined with quantitative PCR (qPCR). Fluorescence in situ hybridization (FISH) was performed to map newly identified satellite repeats on chromosomes of common wheat, Triticum aestivum, 4x and 6x Ae. crassa, Ae. tauschii, and Th. bessarabicum. The new FISH markers can be used in phylogenetic analyses of the Triticeae for chromosome identification and the assessment of their subgenome affinities and for evaluation of genome/chromosome constitution of wide hybrids or polyploid species.
The cytogenetic study of wide hybrids of wheat has both practical and fundamental values. Partial wheat-wheatgrass hybrids (WWGHs) are interesting as a breeding bridge to confer valuable genes to wheat genome, as well as a model object that contains related genomes of Triticeae. The development of cytogenetic markers is a process that requires long and laborious fluorescence in situ hybridization (FISH) testing of various probes before a suitable probe is found. In this study, we aimed to find an approach that allows to facilitate this process. Based on the data sequencing of Thinopyrum ponticum, we selected six tandem repeat (TR) clusters using RepeatExplorer2 pipeline and designed primers for each of them. We estimated the found TRs’ abundance in the genomes of Triticum aestivum, Thinopyrum ponticum, Thinopyrum intermedium and four different WWGH accessions using real-time qPCR, and localized them on the chromosomes of the studied WWGHs using fluorescence in situ hybridization. As a result, we obtained three tandem repeat cytogenetic markers that specifically labeled wheatgrass chromosomes in the presence of bread wheat chromosomes. Moreover, we designed and tested primers for these repeats, and demonstrated that they can be used as qPCR markers for quick and cheap monitoring of the presence of certain chromosomes of wheatgrass in breeding programs.
Thinopyrum ponticum (Podpěra, 1902) Z.-W. Liu & R.-C.Wang, 1993 is an important polyploid wild perennial Triticeae species that is widely used as a source of valuable genes for wheat but its genomic constitution has long been debated. For its chromosome identification, only a limited set of FISH probes has been used. The development of new cytogenetic markers for Th. ponticum chromosomes is of great importance both for cytogenetic characterization of wheat-wheatgrass hybrids and for fundamental comparative studies of phylogenetic relationships between species. Here, we report on the development of five cytogenetic markers for Th. ponticum based on repetitive satellite DNA of which sequences were selected from the whole genome sequence of Aegilops tauschii Cosson, 1849. Using real-time quantitative PCR we estimated the abundance of the found repeats: P720 and P427 had the highest abundance and P132, P332 and P170 had lower quantity in Th. ponticum genome. Using fluorescence in situ hybridization (FISH) we localized five repeats to different regions of the chromosomes of Th. ponticum. Using reprobing multicolor FISH we colocalized the probes between each other. The distribution of these found repeats in the Triticeae genomes and its usability as cytogenetic markers for chromosomes of Th. ponticum are discussed.
Dasypyrum villosum is an annual cereal used as a donor of agronomic traits for wheat. Productivity is one of the most important traits that breeding is aimed at. It is a very complex trait, the formation of which is influenced by many different factors, both internal (the genotype of the plant) and external. The genes responsible for the gibberellin sensitivity played a large role in multiplying yields of cereal crops. Another such gene is the Gid1, which encodes a receptor for gibberellins. This article compares the DNA sequences of the Gid1 gene obtained from six Dasypyrum villosum samples. Using a sequence of wheat and rye taken from the GenBank database (NCBI), we selected primers for regions of different genomes (A, B, and D subgenomes of wheat and the R genome of rye), and carried out a polymerase chain reaction on D. villosum accessions of diverse geographical origin. The resulting PCR product was sequenced by an NGS method. Based on the assembled sequences, DNA markers have been created that make it possible to differentiate these genes of the V genome and homologous genes of wheat origin. Using monosomic addition, substitution, and translocation wheat lines, the localization of the Gid1 gene of D. villosum was established on the long arm of the first V chromosome. A phenotypic assessment of common wheat lines carrying substituted, translocated, or added D. villosum chromosomes in their karyotype was performed. Tendency of disappearance of the first chromosome of D. villosum in the lines with added chromosomes was revealed.
qPCR is widely used in quantitative studies of plant genomes and transcriptomes. In this article, this method is considered as an auxiliary step in the preparation and selection of markers for FISH analysis. Several cases from the authors’ research on populations of the same species were reviewed, and a comparison of the closely related species, as well as the adaptation of the markers, based on satellite tandem repeats (TRs) using quantitative qPCR data was conducted. In the selected cases, TRs with contrast abundance were identified in the cases of the Dasypyrum, Thinopyrum and Aegilops species, and the transfer of TRs between the wheat and related species was demonstrated. TRs with intraspecific copy number variation were revealed in Thinopyrum ponticum and wheat-wheatgrass partial amphidiploids, and the TR showing predominant hybridization to the sea buckthorn Y chromosome was identified. Additionally, problems such as the absence of a reference gene for qPCR, and low-efficiency and self-complementary primers, were illustrated. In the cases considered here, the qPCR results clearly show high correlation with the subsequent results of the FISH analysis, which confirms the value of this method for cytogenetic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.