Thismia is a genus of > 80 mycoheterotrophic species characterized by a peculiar appearance and complex floral morphology. A significant proportion of the species and morphological diversity of Thismia has only been uncovered in the past two decades, and new discoveries continue to be made. Given that many new data have recently become available, and the most comprehensive taxonomic revision of the genus from 1938 addresses less than half of the currently known species, previous hypotheses for species relationships and infrageneric taxonomic classification in Thismia was in need of review. Extensive molecular phylogenetic studies of Thismia at the genus level have never been presented. We investigate the phylogenetic relationships of 41 species (and one variety) of Thismia from the Old World. Our study comprises 68 specimens (for 28 of which the data were newly generated), including outgroup taxa broadly representing Thismiaceae (= Burmanniaceae p.p. sensuAPG IV, 2016), and is based on two nuclear and one mitochondrial marker. We use maximum likelihood and Bayesian inference to infer relationships among the taxa. We also constructed a morphological dataset of 12 mostly floral characters, comparing these characters to hypotheses based on molecular evidence to identify putative synapomorphies for major clades and to discuss hypotheses regarding the evolution of structural traits in the genus. Our analyses indicate that the majority of currently accepted infrageneric taxa of Thismia are polyphyletic. We find support for the monophyly of the Old World group, in which we recognize five well-supported lineages (clades); the only New World species studied appears to be related to the Neotropical genus Tiputinia. Ancestral state reconstructions demonstrate that the evolution of most morphological characters was homoplastic, but we identify characters that provide each of the five clades of Old World Thismia with a unique morphological description. The geographical distribution of the species under study is also shown to be consistent with the major clades. Our investigation provides a phylogenetic basis for the development of a novel sectional classification of Thismia reflecting morphological and geographical traits.
Thismia is characterized by an exceptionally complicated floral morphology that is currently not understood properly. In the taxonomic literature, descriptive rather than morphological terms are often applied to parts of the flower in Thismia, relating to the general appearance of the floral organs instead of their precise homologies. Precise understanding of the floral structure is complicated by the rarity of Thismia spp. and the paucity of appropriate material. Here we provide a comprehensive study of reproductive organs of three Thismia spp. (T. annamensis, T. javanica and T. mucronata) including the first investigation of inflorescence architecture and early floral development in Thismiaceae. We found a hitherto unknown diversity of the reproductive shoots in the genus, manifested in the number of floral prophylls (two or three, in contrast to a single prophyll in the vast majority of monocots) and in the branching plane resulting in two distinct inflorescence types, a drepanium and a bostryx. We report the non-acropetal sequence of initiation of floral whorls (with stamens being the last elements to initiate), never previously described in monocots, and the gynoecium composed of completely plicate carpels, also a rare feature for monocots. Floral vasculature is relatively uniform in Thismia, but significant interspecific differences are found in tepal innervation, including the number of tepal traces; some of these differences are not immediately related to the external tepal morphology. We argue that the annulus, which acts as a roof of the hypanthium, possesses an androecium nature and represents congenitally fused bases of stamen filaments. We describe the stamens as laminar structures, which are also shortly tubular in the distal part of the supraconnective with the adaxial tubular side forming a skirt-like appendage. Finally, the placentas, which are column-like when mature, are initially parietal, becoming secondarily similar to free-central placentas through schizogenous separation from the ovary wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.