Recent studies show that synchronous reluctance motors (SynRMs) present promising technologies. As a result, research on trending SynRMs drive systems has expanded. This work disseminates the recent developments of design, modeling, and more specifically, control of these motors. Firstly, a brief study of the dominant motor technologies compared to SynRMs is carried out. Secondly, the most prominent motor control methods are studied and classified, which can come in handy for researchers and industries to opt for a proper control method for motor drive systems. Finally, the control strategies for different speed regions of SynRM are studied and the transitions between trajectories are analyzed.
In recent decades, the genetic algorithm (GA) has been extensively used in the design optimization of electromagnetic devices. Despite the great merits possessed by the GA, its processing procedure is highly time-consuming. On the contrary, the widely applied Taguchi optimization method is faster with comparable effectiveness in certain optimization problems. This study explores the abilities of both methods within the optimization of a permanent magnet coupling, where the optimization objectives are the minimization of coupling volume and maximization of transmitted torque. The optimal geometry of the coupling and the obtained characteristics achieved by both methods are nearly identical. The magnetic torque density is enhanced by more than 20%, while the volume is reduced by 17%. Yet, the Taguchi method is found to be more time-efficient and effective within the considered optimization problem. Thanks to the additive manufacturing techniques, the initial design and the sophisticated geometry of the Taguchi optimal designs are precisely fabricated. The performances of the coupling designs are validated using an experimental setup.
Design optimization of permanent magnet clutches can be an effective solution for minimization of the volume at a given torque output. This study proposes an optimization method for permanent magnet clutch, which allows obtaining a complex and detailed design. Design and optimization model of the clutch, optimization method and algorithm are comprehensively discussed. Optimization using 2D finite element analysis, combined with a genetic algorithm is demonstrated. The obtained optimal shapes reduced the volume of clutch discs by 31% while the maximum integral attraction force met the limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.