This article presents data from experiments to determine the cryoresistance of Charollais sheep embryos, depending on the stage of embryo development and the method of freezing, as well as the results of embryo transfer. The study design consisted of a study on the cryopreservation of ewe embryos at different developmental stages (early, 2–8 blastomeric and late, at the morula/blastocyst stage), two cryopreservation protocols (slow freezing and ultra-fast vitrification), and embryo transfer of cryo- and fresh embryos. Embryos from Charollais sheep donors (n = 12) were recovered after induction of superovulation. The embryos were recovered surgically (laparotomy) on days 2 and 6 after insemination. Before there was transfer to recipients, part of embryos was cryopreserved using standard slow freezing and ultra-fast vitrification methods. The average ovarian response was 7.54 ovulations per donor, and 5.83 embryos per donor were collected. No effect of the cryopreservation method and embryo development stage on the preservation of the morphological structure of embryos was found. There were no significant differences in the survival rate of cryoembryos at different development stages, frozen using different techniques, and after transfer to recipients. Differences in cryoresistance between embryonic developmental stages in favor of the morula/blastocyst stage were found (survival after thawing 86.4% vs. 75.0% in early embryos). At different stages of development, the survival rate of fresh embryos (45.8%) compared to cryopreserved ones (30.2%) was significantly higher (p < 0.05), while among fresh ones, the best survival rate (50.0%) was observed after the transfer of morules and blastocysts.
Bacterial communities associated with medicinal plants are an essential part of ecosystems. The rhizosphere effect is rather important in the cultivation process. The purpose of the study was to analyze the rhizosphere effect of oregano (Origanum vulgare L.), peppermint (Mentha piperita L.), thyme (Thymus vulgaris L.), creeping thyme (Thymus serpillum L.) and sage (Salvia officinalis L.). To estimate the quantity of 16S bacteria ribosomal genes, qPCR assays were used. To compare bacterial communities’ structure of medicinal plants rhizosphere with bulk soil high-throughput sequencing of the 16S rRNA targeting variable regions V3–V4 of bacteria was carried out. The highest bacterial abundance was associated with T. vulgaris L., M. piperita L. and S. officinalis L., and the lowest was associated with the O. vulgare L. rhizosphere. Phylum Actinobacteriota was predominant in all rhizosphere samples. The maximum bacterial α-diversity was found in S. officinalis L. rhizosphere. According to bacterial β-diversity calculated by the Bray–Curtis metric, T. vulgaris L. root zone significantly differed from bulk soil. The rhizosphere effect was positive to the Myxococcota, Bacteroidota, Verrucomicrobiota, Proteobacteria and Gemmatimonadota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.