The Colorado potato beetle (CPB) is one of the most serious insect pests due to its high ecological plasticity and ability to rapidly develop resistance to insecticides. The use of biological insecticides based on viruses is a promising approach to control insect pests, but the information on viruses which infect leaf feeding beetles is scarce. We performed a metagenomic analysis of 297 CPB genomic and transcriptomic samples from the public National Center for Biotechnology Information Sequence Read Archive (NCBI SRA) database. The reads that were not aligned to the reference genome were assembled with metaSPAdes, and 13314 selected contigs were analyzed with BLAST tools. The contigs and non-aligned reads were also analyzed with Kraken2 software. A total of 3137 virus-positive contigs were attributed to different viruses belonging to 6 types, 17 orders, and 32 families, matching over 97 viral species. The annotated sequences can be divided into several groups: those that are homologous to genetic sequences of insect viruses (Adintoviridae, Ascoviridae, Baculoviridae, Dicistroviridae, Chuviridae, Hytrosaviridae, Iflaviridae, Iridoviridae, Nimaviridae, Nudiviridae, Phasmaviridae, Picornaviridae, Polydnaviriformidae, Xinmoviridae etc.), plant viruses (Betaflexiviridae, Bromoviridae, Kitaviridae, Potyviridae), and endogenous retroviral elements (Retroviridae, Metaviridae). Additionally, the full-length genomes and near-full length genome sequences of several viruses were assembled. We also found sequences belonging to Bracoviriform viruses and, for the first time, experimentally validated the presence of bracoviral genetic fragments in the CPB genome. Our work represents the first attempt to discover the viral genetic material in CPB samples, and we hope that further studies will help to identify new viruses to extend the arsenal of biopesticides against CPB.
The Colorado potato beetle (CPB) is one of the most serious insect pests with high ecological plasticity and ability to rapidly develop resistance to insecticides. The use of biological insecticides based on viruses is a promising approach to control insect pests, but the information on viruses, which infect leaf feeding beetles, is scarce. We performed the metagenomic analysis of 297 CPB genomic and transcriptomic samples from public NBCI SRA database. The reads that were not aligned to the reference genome were assembled with metaSPAdes and 13314 selected contigs were analyzed with BLAST tools. The contigs and non-aligned reads were also analyzed with Kraken2 software. 3137 virus-positive contigs were attributed to different viruses belonging to 6 types, 17 orders and 32 families, matching over 97 viral species. The annotated sequences can be divided into several groups: homologous to genetic sequences of insect viruses (Adintoviridae, Ascoviridae, Baculoviridae, Dicistroviridae, Chuviridae, Hytrosaviridae, Iflaviridae, Iridoviridae, Nimaviridae, Nudiviridae, Phasmaviridae, Picornaviridae, Polydnaviriformidae, Xinmoviridae etc.), plant viruses (Betaflexiviridae, Bromoviridae, Kitaviridae, Potyviridae), and endogenous retroviral elements (Retroviridae, Metaviridae). Also, the full-length genomes and near-full length genome sequences of several viruses were assembled. We have also found the sequences belonging to Bracoviriform viruses and for the first time experimentally validated the presence of bracoviral genetic fragments in CPB genome. Our work is the first attempt to discover the viral genetic material in CPB samples and we hope that further studies will help to identify new viruses to extend the arsenal of biopesticides against CPB. The analytical pipeline and additional materials are available at https://github.com/starchevskayamaria17/uncoVir
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.