Background The three epidemiologically important Opisthorchiidae liver flukes Opisthorchis felineus , O. viverrini , and Clonorchis sinensis , are believed to harbour similar potencies to provoke hepatobiliary diseases in their definitive hosts, although their populations have substantially different ecogeographical aspects including habitat, preferred hosts, population structure. Lack of O. felineus genomic data is an obstacle to the development of comparative molecular biological approaches necessary to obtain new knowledge about the biology of Opisthorchiidae trematodes, to identify essential pathways linked to parasite-host interaction, to predict genes that contribute to liver fluke pathogenesis and for the effective prevention and control of the disease. Results Here we present the first draft genome assembly of O. felineus and its gene repertoire accompanied by a comparative analysis with that of O. viverrini and Clonorchis sinensis . We observed both noticeably high heterozygosity of the sequenced individual and substantial genetic diversity in a pooled sample. This indicates that potency of O. felineus population for rapid adaptive response to control and preventive measures of opisthorchiasis is higher than in O. viverrini and C. sinensis . We also have found that all three species are characterized by more intensive involvement of trans-splicing in RNA processing compared to other trematodes. Conclusion All revealed peculiarities of structural organization of genomes are of extreme importance for a proper description of genes and their products in these parasitic species. This should be taken into account both in academic and applied research of epidemiologically important liver flukes. Further comparative genomics studies of liver flukes and non-carcinogenic flatworms allow for generation of well-grounded hypotheses on the mechanisms underlying development of cholangiocarcinoma associated with opisthorchiasis and clonorchiasis as well as species-specific mechanisms of these diseases. Electronic supplementary material The online version of this article (10.1186/s12864-019-5752-8) contains supplementary material, which is available to authorized users.
Most head and neck cancer (HNC) patients are resistant to cetuximab, an antibody against the epidermal growth factor receptor. Such therapy resistance is known to be mediated, in part, by stromal cells surrounding the tumor cells; however, the mechanisms underlying such a resistance phenotype remain unclear. To identify the mechanisms of cetuximab resistance in an unbiased manner, RNA-sequencing (RNA-seq) of HNC patient-derived xenografts (PDXs) was performed. Comparing the gene expression of HNC-PDXs before and after treatment with cetuximab indicated that the transforming growth factor-beta (TGF-beta) signaling pathway was upregulated in the stromal cells of PDXs that progressed on cetuximab treatment (CetuximabProg-PDX). However, in PDXs that were extremely sensitive to cetuximab (CetuximabSen-PDX), the TGF-beta pathway was downregulated in the stromal compartment. Histopathological analysis of PDXs showed that TGF-beta-activation was detected in cancer-associated fibroblasts (CAFs) of CetuximabProg-PDX. These TGF-beta-activated CAFs were sufficient to limit cetuximab efficacy in vitro and in vivo. Moreover, blocking the TGF-beta pathway using the SMAD3 inhibitor, SIS3, enhanced cetuximab efficacy and prevented the progression of CetuximabProg-PDX. Altogether, our findings indicate that TGF-beta-activated CAFs play a role in limiting cetuximab efficacy in HNC.
Pre-mRNA structure impacts many cellular processes, including splicing in genes associated with disease. The contemporary paradigm of RNA structure prediction is biased toward secondary structures that occur within short ranges of pre-mRNA, although long-range base-pairings are known to be at least as important. Recently, we developed an efficient method for detecting conserved RNA structures on the genome-wide scale, one that does not require multiple sequence alignments and works equally well for the detection of local and long-range base-pairings. Using an enhanced method that detects base-pairings at all possible combinations of splice sites within each gene, we now report RNA structures that could be involved in the regulation of splicing in mammals. Statistically, we demonstrate strong association between the occurrence of conserved RNA structures and alternative splicing, where local RNA structures are generally more frequent at alternative donor splice sites, while long-range structures are more associated with weak alternative acceptor splice sites. As an example, we validated the RNA structure in the human SF1 gene using minigenes in the HEK293 cell line. Point mutations that disrupted the base-pairing of two complementary boxes between exons 9 and 10 of this gene altered the splicing pattern, while the compensatory mutations that reestablished the base-pairing reverted splicing to that of the wild-type. There is statistical evidence for a Dscam-like class of mammalian genes, in which mutually exclusive RNA structures control mutually exclusive alternative splicing. In sum, we propose that long-range base-pairings carry an important, yet unconsidered part of the splicing code, and that, even by modest estimates, there must be thousands of such potentially regulatory structures conserved throughout the evolutionary history of mammals.
Identification of gene expression traits unique to the human brain sheds light on the mechanisms of human cognition. Here we searched for gene expression traits separating humans from other primates by analyzing 88,047 cell nuclei and 422 tissue samples representing 33 brain regions of humans, chimpanzees, bonobos, and macaques. We show that gene expression evolves rapidly within cell types, with more than two-thirds of cell type-specific differences not detected using conventional RNA sequencing of tissue samples. Neurons tend to evolve faster in all hominids, but non-neuronal cell types, such as astrocytes and oligodendrocyte progenitors, show more differences on the human lineage, including alterations of spatial distribution across neocortical layers.
Quantum chemical methods allow screening and prediction of peptide antioxidant activity on the basis of known experimental data. It can be used to design the selective proteolysis of protein sources in order to obtain products with antioxidant activity. Molecular geometry and electronic descriptors of redox-active amino acids, as well as tyrosine and methionine-containing dipeptides, were studied by Density Functional Theory method. The calculated data was used to reveal several descriptors responsible for the antioxidant capacities of the model compounds based on their experimentally obtained antioxidant capacities against ABTS (2,2′-Azino-bis-(3-ethyl-benzothiazoline-6-sulfonate)) and peroxyl radical. A formula to predict antioxidant activity of peptides was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.