Boron-doped carbon coatings have been produced by a method combining the deposition of a pulsed carbon plasma coating and a boron flow formed as a result of the evaporation of a boron target by pulsed YAG: Nd3+ laser irradiation. Phase, chemical composition, structure, and mechanical properties of composite boron-carbon coatings have been determined. Changes in the coatings’ roughness depending on the boron concentration have been established using atomic force microscopy. It has been shown that the grain size is on the rise with increasing boron concentration. Raman spectroscopy has revealed that at a boron concentration of 43.2 at. %. There is a sharp increase in the ID/IG ratio, which indicates the carbon component’s graphitization. Low ID/IG ratios are observed in the coating at low boron concentrations (no more than 17.4 at. %), suggesting a high content of carbon atoms with sp3 bond hybridization. The coating studies, carried out by X-ray photoelectron microscopy, showed that boron could be in a free state or in the form of carbide or oxide depending on the concentration in the coating. In this case, with an increase in boron concentration, there is a decrease in the concentration of carbon atoms in the state with sp3 bond hybridization, accompanied by an increase in the number of B-C bonds and a reduction in the boron concentration not associated with carbon and oxygen. These coating and chemical composition features determine the boron concentration’s established non-monotonic nature on their microhardness, elastic and mechanical properties.
Keywords: composite carbon coatings, boron-doped, atomic force microscopy, X-ray photoelectron microscopy, Raman spectroscopy, microhardness, scratch.
The identification of high-energy compounds in trace concentrations not only in the laboratory, but also in field conditions is of particular interest. The process should be clear, easy, and well-recognizable. We formed SERS-active substrates by using elongated nickel nanotubes synthesized by electrochemical deposition in the pores of ion-track membranes and coated them with gold for further application in the detection of low concentrations of analytes. The substrates were characterized using various techniques to determine the morphology of the nanotubes and modifying gold layer. The possibility of obtaining two types of gold-layer morphology was shown: in the form of a smooth film up to 20–50 nm thick and a coating with nanoneedles up to 250 nm long. The electric fields around the nanotubes were simulated at a laser wavelength of 532 nm to demonstrate the influence of the gold-layer morphology on the field distribution. The “needle” morphology was chosen to form the most effective SERS-active substrates for detection of low concentrations of aromatic polynitro compounds. The spectral peaks were identified by comparing the model and experimental Raman spectra at concentrations down to 10−5 M. Within this limit, all peaks (“fingerprints” of the substance) were clearly distinguishable.
The influence of the architecture of multilayer metal-carbon coatings, the nature of individual metallic layers (Ti, Cu), heat treatment parameters on their microhardness, the level of internal stresses and tribotechnical properties are determined. It is defined that for systems based on carbon and nanosized metal layers, the friction coefficient values are lower than for single-layer carbon coatings. Heat treatment of multilayer systems in air leads to the increase in the friction coefficient, primarily Ti/a-C/Ti coatings, which is due to the formation of solid phases of TiN, TiC and TiCN, as well as oxides of TixOy acting as abrasive. The level of internal stresses of multilayer systems containing layers of copper is lower than that of single-layer carbon coatings and coatings containing layers of titanium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.