The processes taking place on the friction surface of high-alloyed aluminum alloys working with steel whilst replacing bronze journal bearings with aluminum are investigated. In this regard, eight experimental aluminum alloys with an Sn content from 5.4% to 11.0%, which also included Pb, Zn, Si, Mg, and Cu, were cast. The surface and subsurface layer of experimental aluminum bearings were studied before and after tribological tests with a 38HN3MA steel counterbody by scanning electron microscopy including energy-dispersive analysis. The best aluminum alloy, which had an Sn content of 5.8% after the friction tests, showed 6.5-times better wear resistance and steel counterbody wear rate than the bronze reference. Both structural and compositional changes in the surface layer were observed. It was revealed that secondary structures formed on the surface during the friction process and included all of the chemical elements in the tribosystem, which is a consequence of its self-organization. Generally, the secondary structures are thin metal-polymer films generated as a result of the high carbon and oxygen content. The interaction behavior of some of the chemical elements in the tribosystem is shown and discussed. In addition, the influence that Sn, Pb, Cu, and C content in the secondary structures has on the tribological properties of low-tin and medium-tin alloys is shown.
This article describes the elemental composition of secondary structures formed on the steel contact surface during wear test against experimental Al alloys. Wear tests were carried out according to the rotating steel roller-fixed shoe of an antifriction alloy scheme under boundary lubrication conditions. The duration of the test was 40 h, and motor oil M14V2 was used as a lubricant. The microstructure and elemental characterization of the steel surface before and after the tribological test was obtained by scanning electron microscopy equipped with EDX. The simultaneous presence of various constituents of oil, steel, and Al alloys can produce both positive and negative effects on the friction characteristic of the tribosystem. It was shown that presence of Mo, F, S, Si, Ni, and Cr have a favorable effect on the wear resistance of steel and the friction coefficient of the rubbing surfaces due to the formation of secondary structures with optimal composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.