Two series of hybrid inorganic-organic derivatives, obtained via the modification of protonated Ruddlesden–Popper phases H2Ln2Ti3O10 (Ln = La, Nd) with intercalated n-alkylamines and grafted n-alkoxy groups, have been systematically investigated in relation to photocatalytic hydrogen production from a model of 1 mol % aqueous solution of methanol for the first time. Photocatalytic measurements were performed both for bare samples and for their composites with Pt nanoparticles as a cocatalyst using an advanced scheme, including dark stages, monitoring of the volume concentration of the sample in the reaction suspension during the experiment, shifts of its pH and possible exfoliation of layered compounds into nanolayers. It was found that the incorporation of organic components into the interlayer space of the titanates increases their photocatalytic activity up to 117 times compared with that of the initial compounds. Additional platinization of the hybrid samples’ surface allowed for achieving apparent quantum efficiency of hydrogen evolution of more than 40%. It was established that the photocatalytic activity of the hybrid samples correlates with the hydration degree of their interlayer space, which is considered a separate reaction zone in photocatalysis, and that hydrogen indeed generates from the aqueous methanol solution rather than from organic components of the derivatives.
A series of hybrid inorganic–organic niobates HCa2Nb3O10×ROH, containing n-alkoxy groups of primary alcohols (R = Me, Et, Pr, Bu, Hx, and Dc) grafted in the interlayer space, has been studied for the first time in relation to photocatalytic hydrogen generation from a model 1 mol % aqueous solution of methanol under ultraviolet irradiation. Photocatalytic activity was measured both for bare samples and for their composites with Pt nanoparticles as a cocatalyst. The advanced measurement scheme allowed monitoring the volume concentration of a sample in a suspension during the experiment, its pH, and possible exfoliation of layered compounds into nanolayers. In the series of n-alkoxy derivatives, the maximum rate of hydrogen evolution was achieved over a Pt-loaded ethoxy derivative HCa2Nb3O10×EtOH/Pt. Its apparent quantum efficiency of 20.6% in the 220–350 nm range was found not to be caused by changes in the light absorption region or specific surface area upon ethanol grafting. Moreover, the amounts of hydrogen released during the measurements significantly exceeded those of interlayer organic components, indicating that hydrogen is generated from the reaction solution rather than from the hybrid material.
Photocatalytic activity of HB2Nb3O10 perovskite nanosheets (B = Ca, Sr) has been systematically investigated in the reactions of hydrogen production, depending on the method of the photocatalyst preparation: using the pristine nanosheets in the parent suspension without reassembly, filtered nanosheets as well as nanosheets restacked by hydrochloric acid. Photocatalytic measurements were organized in such a way as to control a wide range of parameters, including the hydrogen generation rate, quantum efficiency of the reaction, potential dark activity of the sample as well as stability and pH of the reaction suspension. Exfoliation of the niobates into nanosheets allowed obtaining efficient photocatalysts surpassing the initial bulk materials in the activity up to 55 times and providing apparent quantum efficiency up to 20.8% after surface decoration with a Pt cocatalyst. Among the reassembled samples, greater hydrogen evolution activity was exhibited by simply filtered nanosheets that, unlike the HCl-restacked ones, were found to possess much lower specific surface area in a dry state but contain a perceptible amount of tetrabutylammonium cations on the surface. The activity difference, potentially, is associated with the fact that the filtered nanosheets undergo ultrasonic disaggregation before photocatalytic tests much easier than their HCl-restacked counterparts and, thanks to this, have greater active surface in the reaction suspension. In addition, the enhanced activity of the filtered nanosheets may be due to the presence of tetrabutylammonium as an organic modifier on their surface, which is consistent with the high photocatalytic performance of organically modified layered perovskites considered in our previous reports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.