Efficient signal communication uses photons. Signal processing, however, uses an optically inactive medium, electrons. Therefore, an interconnection between electronic signal processing and optical communication is required at the integrated circuit level. We demonstrated control of exciton fluxes in an excitonic integrated circuit. The circuit consists of three exciton optoelectronic transistors and performs operations with exciton fluxes, such as directional switching and merging. Photons transform into excitons at the circuit input, and the excitons transform into photons at the circuit output. The exciton flux from the input to the output is controlled by a pattern of the electrode voltages. The direct coupling of photons, used in communication, to excitons, used as the device-operation medium, may lead to the development of efficient exciton-based optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.