Circulating cell-free DNA (cfDNA) isolated from blood has been identified as a potential biomarker in numerous fields, and has been the object of intensive research over the past decade, although its original discovery dates back 60 years. While it is already used routinely in commercial and clinical practice in oncology and prenatal testing, other potential applications have emerged, including for diabetes, cardiovascular diseases, organ transplantation, autoimmune diseases, sepsis, trauma, and sport management. As with the discovery and development of any biomarker, preanalytical requirements and documentation are as important as analytical requirements. Except for the case of noninvasive prenatal testing and prenatal diagnosis, the implementation of cfDNA in a clinical setting remains limited because of the lack of standardization of cfDNA analysis. In particular, only a few attempts have been made to collect and pool scientific data on the relevant preanalytical factors, and no standard operating procedure has yet been set. For this report, we have performed a thorough and systematic search via MEDLINE® for relevant preanalytical variables and patient factors. These form the basis of the guidelines we propose for analyzing nuclear cfDNA.
To unequivocally address their unresolved intimate structures in blood, we scrutinized the size distribution of circulating cell-free DNA (cfDNA) using whole-genome sequencing (WGS) from both double- and single-strand DNA library preparations (DSP and SSP, n = 7) and using quantitative PCR (Q-PCR, n = 116). The size profile in healthy individuals was remarkably homogenous when using DSP sequencing or SSP sequencing. CfDNA size profile had a characteristic nucleosome fragmentation pattern. Overall, our data indicate that the proportion of cfDNA inserted in mono-nucleosomes, di-nucleosomes, and chromatin of higher molecular size (>1000 bp) can be estimated as 67.5% to 80%, 9.4% to 11.5%, and 8.5% to 21.0%, respectively. Although DNA on single chromatosomes or mono-nucleosomes is detectable, our data revealed that cfDNA is highly nicked (97%–98%) on those structures, which appear to be subjected to continuous nuclease activity in the bloodstream. Fragments analysis allows the distinction of cfDNA of different origins: first, cfDNA size profile analysis may be useful in cfDNA extract quality control; second, subtle but reliable differences between metastatic colorectal cancer patients and healthy individuals vary with the proportion of malignant cell-derived cfDNA in plasma extracts, pointing to a higher degree of cfDNA fragmentation and nuclease activity in samples with high malignant cell cfDNA content.
Circulating cell-free DNA (cfDNA) is one of the fastest growing and most exciting areas in oncology in recent years. Its potential clinical uses cover now each phase of cancer patient management care (predictive information, detection of the minimal residual disease, early detection of resistance, treatment monitoring, recurrence surveillance, and cancer early detection/screening). This review relates the recent advances in the application of circulating DNA or RNA in oncology building on unpublished or initial findings/work presented at the 10th international symposium on circulating nucleic acids in plasma and serum held in Montpellier from the 20th to the 22nd of September 2017. This year, presenters revealed their latest data and crucial observations notably in relation to (i) the circulating cell-free (cfDNA) structure and implications regarding their optimal detection; (ii) their role in the metastatic or immunological processes; (iii) evaluation of miRNA panels for cancer patient follow up; (iv) the detection of the minimal residual disease; (v) the evaluation of a screening tests for cancer using cfDNA analysis; and (vi) elements of preanalytical guidelines. This work reviews the recent progresses in the field brought to light in the meeting, as well as in the most important reports from the literature, past and present. It proposes a broader picture of the basic research and its potential, and of the implementation and current challenges in the use of circulating nucleic acids in oncology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.