Since regional forest protection services often have limited material resources, the emergency response to the emerging forest fires requires to choice an optimal maneuvering solution and a method to transfer available forces. One of the possible ways is to create a regional transport model for the case of forest fire based on the network of public roads and forest glades. Paper describes a method of calculation of travelling time and distance to a forest fire, research results for an experimental transport model, created by Network Analyst ArcGIS, to build the shortest routes from the fire stations to the forest fires. Spatially-distributed data on the fire trucks' average speed for different types of roads and the elevation values were used in the model for the test area (Irkutsk region of Russia). In total 16251 routes were built and analyzed for 16 years (2002-2017). The model was validated using the data on forest fires detected by the MODIS-Aqua/Terra spectroradiometer within the ground and forest aviation zones of test region. A map showing the fire routes within one-, two-and three-hours ground transport accessibility is created for the forest fire ground protection zone of the test region. The model's work quality was validated for the forest fires detected within the ground zone. As a result, 98% (2661) of forest fires in the ground zone are accessible within three hours and less, that indirectly confirms the correctness of model. At the same time, the majority of forest fires are located within one-(68%) and two-(24%) hour's availability. Finally, recommendations on using the transport model for the managerial decisions on the forest fire fighting on regional level were given.
Journal of Geographic Information System mixed forests. The number of inaccessible pixels has been increased by more than two times in barriers scenario. Technology can be used for different thematic data sources and domains like ecology or economy.
Modern geospatial technologies and permanently updated wildfire monitoring datasets are the basis of improving forest firefighting on different administrative scales. One of the tasks is to use the spatial representation of forest fire locations during the fire season and offer timely suitable technical options for accessing them. We developed a GIS technology to create forest fire ground access routes for special firefighting vehicles moving from a ground firefighting base (fire-chemical station) to the place of the forest fire detection; the technology includes a statistical and geospatial accessibility analysis of the routes. The key data are a transport model consisting of public roads and forest glades on the regional scale. We described the main principles of the transport model construction and usage, and their implementation for the Russian Federal Districts. An access routes database for the 2002–2019 fire seasons, a central part of the Siberian Federal District, was produced and analysed. By using a hot spot analysis, we confirmed that forest fires are poorly accessible away from the centre of the Siberian District. The created road accessibility maps show “a proposed ground access zone” within the key area to fight forest fires for the fire seasons to come.
Geospatial approaches are widely used to organize access and to manage the extinguishing of forest fires globally. Term "transport accessibility" is used in a variety of geographical and economic researches. Assessment of transport accessibility is directly related to the feasibility study to locate the fire stations in a particular region. Location analysis of objects relative to other objects, while taking into account various quantitative and qualitative parameters, is a classical problem solved by geoinformation systems.Present research work is aimed to be used to improve the situation with forest fires in Russia where one of the main asset of operational regional firefighting in the forests is a fire-and-chemical (fire) station. Traditionally station placement is under the responsibility of Russian region to which stations are administratively subordinate. The location of fire station is determined taking into account the species structure of forests, natural fire danger, road infrastructure and some other factors. Irkutsk region, one of the territories with the constant perennial fire danger in the forests, was chosen as a test area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.