The lack of meteorological observations at high latitudes and the small size and relatively short lifetime of polar lows (PLs) constitute a problem in the simulation and prediction of these phenomena by numerical models. On the other hand, PLs, which are rapidly developing, can lead to such extreme weather events as stormy waves, strong winds, the icing of ships, and snowfalls with low visibility, which can influence communication along the Arctic seas. This article is devoted to studying the possibility of the numerical simulation and prediction of polar lows by different model configurations and resolutions. The results of the numerical experiments for the Norwegian and Barents seas with grid spacings of 6.5 and 2 km using the ICON-Ru configurations of the ICON (ICOsahedral Nonhydrostatic) model and with a grid spacing of 6.5 km using the COSMO-CLM (Climate Limited-area Modeling) configuration of the COSMO (COnsortium for Small-scale MOdelling) model are presented for the cold season of 2019–2020. All the used model configurations demonstrated the possibility of the realistic simulation of polar lows. The ICON model showed slightly more accurate results for the analyzed cases. The best results showed runs with lead times of less than a day.
Forest vegetation can affect the climate and weather patterns in multiple ways. What are the main mechanisms of such influence and how the land-use and vegetation changes may affect the weather and climate conditions in different geographical regions are still not quite clear. In our study, the possible impact of land use and forest cover changes in the central part of the East European plain on regional meteorological conditions was investigated using the regional COSMO model. In our modeling experiments we used two extreme land-use change scenarios imitating total deforestation and afforestation of experimental area located between 55° and 59ºN and 28° and 37°E in the central part of the East European plain. Modeling results conducted for the year 2016 showed that deforestation results in increase of the temperature difference between summer and winter months by up to 0.6ºС and in reduction of the annual precipitation by 35 mm. On the contrary, afforestation leads to decrease of the annual temperature range by 0.3° С and to growth of annual precipitation by 15 mm. Moreover, the deforestation results in higher frequencies of stronger winds and lower number of fog events, while the afforestation leads to opposite effects. Analysis of the Khromov and Gorchinsky indexes of continentality showed that the deforestation of the selected experimental area may lead to increase of the climate continentality in the study region, whereas the afforestation results in milder climate conditions.
Considered are the synoptic mechanisms of the catastrophic flood formation on the Amur River in summer 2013; these enabled revealing the set of reasons responsible for the unprecedented rise of the water level. Demonstrated is the primary importance of the series of polar-front cyclones of the unprecedented duration and intensity being the main circulation link of the summer Far Eastern monsoon. It is revealed that the intensification of monsoon rains is associated with the active participation of the marine tropical air from the Pacific Ocean in frontal processes. The simultaneous deepening of the monsoon low over the land and the strengthening of the subtropical high over the ocean became a reason for the dramatic intensification of the moisture-laden monsoon flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.