The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements. We demonstrate via a proteomic analysis that the muscle-specific signature is functional and conserved. Core chaperones are significantly more abundant across tissues and more important for cell survival than variable chaperones. Together with variable chaperones, they form tissue-specific functional networks. Analysis of human organ development and aging brain transcriptomes reveals that these functional networks are established in development and decline with age. In this work, we expand the known functional organization of de novo versus stress-inducible eukaryotic chaperones into a layered core-variable architecture in multi-cellular organisms.
TGF-β1 is a master cytokine in immune regulation, orchestrating both pro- and anti-inflammatory reactions. Recent studies show that whereas TGF-β1 induces a quiescent microglia phenotype, it plays a pathogenic role in the neurovascular unit and triggers neuronal hyperexcitability and epileptogenesis. In this study, we show that, in primary glial cultures, TGF-β signaling induces rapid upregulation of the cytokine IL-6 in astrocytes, but not in microglia, via enhanced expression, phosphorylation, and nuclear translocation of SMAD2/3. Electrophysiological recordings show that administration of IL-6 increases cortical excitability, culminating in epileptiform discharges in vitro and spontaneous seizures in C57BL/6 mice. Intracellular recordings from layer V pyramidal cells in neocortical slices obtained from IL-6–treated mice show that during epileptogenesis, the cells respond to repetitive orthodromic activation with prolonged after-depolarization with no apparent changes in intrinsic membrane properties. Notably, TGF-β1–induced IL-6 upregulation occurs in brains of FVB/N but not in brains of C57BL/6 mice. Overall, our data suggest that TGF-β signaling in the brain can cause astrocyte activation whereby IL-6 upregulation results in dysregulation of astrocyte–neuronal interactions and neuronal hyperexcitability. Whereas IL-6 is epileptogenic in C57BL/6 mice, its upregulation by TGF-β1 is more profound in FVB/N mice characterized as a relatively more susceptible strain to seizure-induced cell death.
Motivation The distinct functionalities of human tissues and cell types underlie complex phenotype-genotype relationships, yet often remain elusive. Harnessing the multitude of bulk and single-cell human transcriptomes while focusing on processes can help reveal these distinct functionalities. Results The Tissue-Process Activity (TiPA) method aims to identify processes that are preferentially active or under-expressed in specific contexts, by comparing the expression levels of process genes between contexts. We tested TiPA on 1,579 tissue-specific processes and bulk tissue transcriptomes, finding that it performed better than another method. Next, we used TiPA to ask whether the activity of certain processes could underlie the tissue-specific manifestation of 1,233 hereditary diseases. We found that 21% of the disease-causing genes indeed participated in such processes, thereby illuminating their genotype-phenotype relationships. Lastly, we applied TiPA to single-cell transcriptomes of 108 human cell types, revealing that process activities often match cell type identities and can thus aid annotation efforts. Hence, differential activity of processes can highlight the distinct functionality of tissues and cells in a robust and meaningful manner. Availability TiPA code is available in GitHub (https://github.com/moranshar/TiPA). In addition, all data are available as part of the Supplementary Information. Supplementary information Supplementary data are available at Bioinformatics online.
The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Here, we used human tissue RNAsequencing profiles to analyze the expression and organization of chaperones across 29 main tissues. We found that relative to protein-coding genes, chaperones were significantly more ubiquitously and highly expressed across all tissues. Nevertheless, differential expression analysis revealed that most chaperones were up-or downregulated in certain tissues, suggesting that they have tissue-specific roles. In agreement, chaperones that were upregulated in skeletal muscle were highly enriched in mouse myoblasts and in nematode's muscle tissue, and overlapped significantly with chaperones that are causal for muscle diseases. We also identified a distinct subset of chaperones that formed a uniformly-expressed, cross-family core group conducting basic cellular functions that was significantly more essential for cell survival. Altogether, this suggests a layered architecture of chaperones across tissues that is composed of shared core elements that are complemented by variable elements which give rise to tissue-specific functions and sensitivities, thereby contributing to the tissue-specificity of protein misfolding diseases. Significance StatementProtein misfolding diseases, such as neurodegenerative disorders and myopathies, are often manifested in a specific tissue or even a specific cell type. Enigmatically, however, they are typically caused by mutations in widely expressed proteins. Here we focused on chaperones, the main and basic components of the protein-folding machinery of cells. Computational analyses of large scale tissue transcriptomes unveils that the chaperone system is composed of core essential elements that are uniformly expressed across tissues, and of variable elements that are differentially expressed in a tissue-specific manner. This organization allows each tissue to fit the quality control system to its specific requirements and illuminates the mechanisms that underlie a tissue's susceptibility to protein-misfolding diseases.
Successful gene therapy requires the development of suitable carriers for the selective and efficient delivery of genes to specific target cells, with minimal toxicity. In this work, we present a non-viral vector for gene delivery composed of biocompatible materials, CaCl 2 , plasmid DNA and the semi-synthetic anionic biopolymer alginate sulfate (AlgS), which spontaneously co-assembled to form nanoparticles (NPs). The NPs were characterized with a slightly anionic surface charge (Zeta potential [ζ] = −14 mV), an average size of 270 nm, and their suspension was stable for several days with no aggregation. X-ray photoelectron spectroscopy (XPS) validated their ternary composition, and it elucidated the molecular interactions among Ca 2+ , the plasmid DNA, and the AlgS. Efficient cellular uptake (>80%), associated with potent GFP gene expression (22%–35%), was observed across multiple cell types: primary rat neonatal cardiac fibroblasts, human breast cancer cell line, and human hepatocellular carcinoma cells. The uptake mechanism of the NPs was studied using imaging flow cytometry and shown to be via active, clathrin-mediated endocytosis, as chemical inhibition of this pathway significantly reduced EGFP expression. The NPs were cytocompatible and did not activate the T lymphocytes in human peripheral blood mononuclear cells. Proof of concept for the efficacy of these NPs as a carrier in cancer gene therapy was demonstrated for Diphtheria Toxin Fragment A (DT-A), resulting in abrogation of protein synthesis and cell death in the human breast cancer cell line. Collectively, our results show that the developed AlgS-Ca 2+ -plasmid DNA (pDNA) NPs may be used as an effective non-viral carrier for pDNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.