We have shown the opportunity to use the unique inhomogeneities of the internal structure of an optical fiber waveguide for remote authentication of users or an optic fiber line. Optical time domain reflectometry (OTDR) is demonstrated to be applicable to observing unclonable backscattered signal patterns at distances of tens of kilometers. The physical nature of the detected patterns was explained, and their characteristic spatial periods were investigated. The patterns are due to the refractive index fluctuations of a standard telecommunication fiber. We have experimentally verified that the patterns are an example of a physically unclonable function (PUF). The uniqueness and reproducibility of the patterns have been demonstrated and an outline of authentication protocol has been proposed.
In this work, the impact of various factors on the total ozone column and erythemal UV radiation (Qery) in the territory of Northern Eurasia for the period from 1979 to 2059 based on the calculations of the chemical-climate model INM-RHSU is analyzed. The sensitivity of ozone recovery to the setting of different input data on sea surface temperature (SST) is estimated. Depending on the SST datasets, there are significant differences in ozone trends. A possible mechanism that explains the reasons for these differences is examined. The numerical experiment with the only change in ozone depleting substances according to Montreal protocol showed the ozone recovery and, as a result, Qery reduction, but this recovery is not linear. During the 2016-2020 period we estimated the 2-5% increase in Qery values relative to the baseline period (1979-1983) with about 6% maximum over Russian polar region. During the 2035-2039 period the Qery change against 1979-1983 period is about zero, during the 2055-2059 period we obtained the decrease of about 4-6% over Northern Asia and 6-8% over Northern Europe These changes corresponded to the noticeable boundary location shift of UV resources, which determine UV radiation impact on human health. The most significant changes will be observed in spring and summer: the UV deficiency zone will be expanded in the north and the UV excess zone over northern seas will be reduced in the south.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.