Low resistivity (∼100 μΩ cm) titanium nitride (TiN) films were obtained by plasma enhanced atomic layer deposition using tetrakis(dimethylamido)titanium and a nitrogen/argon plasma mixture. The impact of process parameters on film crystallinity, oxygen contamination, and electrical resistivity was studied systematically. A low background pressure during the plasma half-cycle was critical for obtaining low resistivity. The low resistivity films were highly crystalline, having (001) oriented columnar grains. Oxygen and carbon content was about 3% and 2%, respectively. The role of argon plasma in film properties is discussed. Plasma damage to thin dielectric films beneath the TiN layer was minimized by the low-pressure process. The authors suggest that electron scattering at grain boundaries is the dominant mechanism which determines the resistivity of the TiN films, thus obtaining large columnar grains is the key to obtaining low film resistivity.
The authors report on the role of various reactive gases on the structure and properties of TiN thin films prepared by plasma enhanced atomic layer deposition (PEALD) from tetrakis(dimethylamido)titanium. The reactive gas plays an important role determining the film structure and properties. Nitrogen-based plasma (N2 and NH3) resulted in low oxygen (∼3%) and carbon (∼2%) contamination and well-defined columnar grain structure. A nitrogen excess (∼4%) was found in the films deposited using N2 plasma. The stoichiometric films and lowest resistivity (∼80 μΩ cm) were achieved using NH3 plasma. Deposition using H2 plasma resulted in higher carbon and oxygen contamination (∼6% for each element). The reactive gas also plays an important role in determining the grain size and preferential orientation. By varying the plasma chemistry, either (111) or (100) oriented films can be obtained. A mechanism determining the PEALD TiN preferential orientation is proposed. Finally, plasma induced degradation of the underlying dielectric layer is evaluated.
Inspired by nature, we investigate the short-range order effect on the physical properties of amorphous materials. Amorphous Al2O3 thin films exhibit a higher proportion of their 4-coordinated Al sites close to the surface, causing variations in the average short-range order of the film. Below some thickness, the density of these films changes with size. In this work, we address the short-range order effect, through the thickness, on the electronic and optical properties of atomic layer deposited (ALD) Al2O3 thin films. Both the refractive index and the permittivity were found to vary with size. The refractive index increased with thickness, and for thick films (~50 nm) it was comparable to that of bulk amorphous Al2O3. The permittivity increased with thickness as well, but did not attain those of the bulk material. We discuss how these effects correlate with the density and short-range order. These results shed light on the size effects in thin amorphous oxides, and may guide the design of electronic and optical components and devices.
This study investigates molybdenum deposited by atomic layer deposition (ALD) as a potential gate metallization for flash memory devices. Polycrystalline (110)-oriented, with low-resistivity (∼16 μΩ cm) ALD Mo films were deposited on SiO2 and Al2O3 using hydrogen reduction of Mo-oxychloride precursor. On SiO2, an effective work function (EWF) of 4.75 ± 0.1 eV was obtained for as-deposited samples, and its value increased up to 4.9 ± 0.05 eV upon annealing at 600 °C, whereas on Al2O3, a stable EWF value of 5.05 ± 0.05 eV was observed. The EWF variation is correlated with changes in the composition and chemical bonding at the metal/dielectric interface. The latter were investigated by energy dispersive x-ray spectroscopy and electron energy loss spectroscopy performed using scanning transmission electron microscopy and x-ray photoelectron spectroscopy. This analysis revealed that the presence of Mo oxide at the Al2O3/Mo interface stabilizes the EWF, and the EWF increase on SiO2 is attributed to Si enrichment at the SiO2/Mo interface upon annealing. A theoretical model is suggested to explain the chemical bonding difference on SiO2 and Al2O3, based on the Mo-precursor reactions with the surface groups of the dielectric. This study emphasizes the importance of the precursor/substrate reactions in determining the compositional and, therefore, electrical properties of the metal/dielectric interface, and demonstrates that ALD Mo deposited directly on SiO2 and Al2O3 is a promising candidate for gate metallization of flash devices due to its high EWF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.