The chirality of alkyl p-toluenesulfinates and of I80-labeled p-toluenesulfinate ions was utilized to study the stereoselectivity of ion-pair recombinations. The diastereomers of 2-norpiny1 (13), 2-norbornyl (16), 2-methyl-2-norbornyl (25), and exo-4-protoadamantyl (34) p-toluenesulfinates were rearranged in formamide or trifluoroacetic acid (TFA). Solvolysis competed to a minor extent. Predominant return of the carbocations to the oxygen atoms of ArS02-was observed if the isomeric p-toluenesulfinates persisted (kinetic control). On repeated ionization (thermodynamic control), sulfones were eventually formed. With the exception of 25, 1,2 shifts of the p-toluenesulfinate anion proceed faster than oxygen exchange. The migration origin of the carbocation returns preferentially to the oxygen atom of ArS02-from which the migration terminus departed. Conversely, the sulfinate anion discriminates between positions 1 and 2 of the symmetrical, bridged 2-norbornyl cation in favor of the carbon atom from which it departed. The selectivity of ion-pair recombination decreases in the order 2-norpinyl = 4-protoadamantyl > 2-norbornyl > 2-methyl-2-norborny1, i.e., with increasing stability of the carbocation. The rearrangements of 13 and 34 proved to be more selective in TFA at 0°C than in formamide at 120-130°C. The p-toluenesulfinates 13 and 34 were compared with the analogous tosylates and 3,5-dinitrobenzoates. More oxygen scrambling was observed with less nucleophilic anions (tosylate % p-toluenesulfinate > 3,5-dinitrobenzoate).Oxygen scrambling is also enhanced if the anion migrates over a longer distance (2-norpinyl + exo-2-norbornyl vs. 2-The concept of ion pairs in nucleophilic substitution, introduced by Winstein ['], is now generally acceptedl2] (Eq. 1). Contact (intimate) as well as solvent-separated ions pairs have been invoked to explain the products, stereochemistry, and kinetics of solvolysis reactions. Evidence for the recombination of ion pairs (internal return) was obtained from rearrangement or racemization of the cationic component (RX + R'X) and from exchange processes (isotopic scrambling) of the anionic component (RX + RX'). Most often, either technique was applied. More insight can be gained from the combination of both methods, as illustrated by the seminal work of Goering and Thiesr'] on lXO labeled, enantiomerically enriched bicyclo[3.2.l]oct-endo-2-yl tosylate (4). The intervening carbocation was found to return preferentially to the oxygen atom from which it departed (4a'/4b' ca. 2:l).The substrates used in previous studies were largely carboxylates (l)L41 and sulfonates (2) [3,5]. Our efforts were directed to sulfinates (3) since we anticipated opportunities with 3 that are not provided by 1 and 2l61. The ambident character of the sulfinate ion suggests that sulfones as well as sulfinates should arise from ion-pair recombination. Owing to the chirality of 3, migration of R from oxygen to oxygen results in racemization (if R is achiral) or diastereomerization (if R is chiral). The rearrangement of a...
again increases relative to 3 and as second product of the cycloreversion, the diazadistannetidine 5 begins to crystallize.On treatment of crystals of 3 with warmed toluene (ca. 60°C) a color change from red to yellow takes place and again a [2 + I] cyclore~ersion[~] yields stannylene 1 and stannanimine 4, which in agreement with the results of Wiberg and VasishtC6] dimerizes to 5. On reaction of 1 with 2 in the ratio 1 :3.5 the stannanimine is trapped almost quantitatively by 2 in a [2 + 31 cycloaddition to form 6.I6IThe result of the X-ray structure analysis['] of 3 is shown in Figure 1. Although the tin-nitrogen bond lengths lie with-Y Fig. 1. Structure of 3 in the crystal. Important bond lengths [A] and angles ["I:
Hydroborierung der 5-Norbornen-2-carboNitrile 11 ergab 5und 6-Hydroxynorbornan-2-carbonitrile (9a, 1Oa) neben den entsprechenden Ketonen 12, 13. 5und 6-Amioonorbornan-2-carboNtrile (17a, 18a) wurden entweder aus den endo-Brosylaten 14b, 16b durch Azid-Substitution und anschlieljende Hydrierung oder aus den Alkenen 11 durch Aminoborierung erhalten. Solvolysen der Brosylate 9b, 10b und Triflate 9c sowie Desaminierungen der Amine 17% 18a mit salpetriger S h e wurden zur Erzeugung von 5-und 6-Cyan-2-norbornyl-Kationen benutzt. Invertierende Substitution durch das Lijsungsmittel ist ein wichtiger Reaktionsweg von exo-6-CN-Edukteq selbst von Diazonium-Ionen, in nucleophilen Medien. Wenig nucleophile Losungsmittel (TFE, TFA) und endo-GCH3-Gruppen eliminieren den k,-ProzeB weitgehend. wan-2-norbomyl-Kationen (22) zeigen Wagner-Meerwein-Umlagerung und 3,2-H-Verschiebung in Konkurrenz zum Lo-sungsmittelangriK Ihre Eigenschaften liegen zwischen denen des Stammsystems und denen stark dktabilisierter 2-Norbornyl-Kationen. Die 3,2-H-Verschiebung fiihrt irreversibel zu den stabileren, r a s h lquilibrierenden (oder verbriickten) 5-Cyan-2-norbornyl-Kationen 19.Das Energieprofil des 2-Norbornyl-Kation~'.~' 1aDt sich durch sterische und elektronische Effekte verandern. Je nach Art der Substituenten R an C-1 und C-2 kann die verbriickte, symmetrische Struktur 2 als energiearmste Form (R = H) oder als ubergangszustand der gegenseitigen Umlagerung offener lonen .(I s 1') fungieren (R = CH,, Aryl, OR, ...)*). Donor-Gruppen in unmittelbarer Wechselwirkung mit der positiven Ladung stabilisieren 1 starker als 2 und verlangsamen damit die Wagner-Meerwein-Umlagerung. Substituenten in anderen Positionen wirken vorwiegend induktiv3). Wir konnten zeigen, daD vier Fluor-Atome oder vier CF3-Gruppen an C-5 und C-6 die Wagner-Meerwein-Umlagerung vollig unterbin-den4). Dies ist hauptsachlich eine Folge der 6-Substitution, da 5-Substituenten das Umlagerungsverhalten kaum beeinflussen'-'). Akzeptor-Gruppen am wandernden (pentakoordinierten) C-6 destabilisieren die verbriickte Struktur 4 starker als das offene Ion 3.Zwischen der raschen Wagner-Meerwein-Umlagerung von 3 (R = H2), Alkyl*)) und der extrem langsamen (nicht nachweisbaren) Umlagerung von 3 (R = F oder CF:)) klafft eine breite Liicke (,,rasch" und Jangsam" beziehen sich auf diediffusionskontrollierte -Reaktion der Carbo-Kationen mit dem Losungsmittel). Bei der Suche nach Wagner-Meerwein-Umlagerungen ,,mittlerer" Geschwindigkeit bot sich die Nitril-Gruppe als 6-Substituent an. h e r Solvolysegeschwindigkeiten (in 80proz. Ethanol9-") und Solvolyseprodukte [in Dioxan/Wasser (7: 3)]12) der Tosylate 5-8 haben Grob und Mitarbeiter bereits berichtet. Nach ihren Ergebnissen (sie sind mit unseren Resultaten in Tab. 2 zusamrnengestellt) erfolgt praktisch keine Wagner-Meerwein-Umlagerung; die Konfiguration an C-6 des Edukts findet sich zu 3 95% im Produkt wieder12'. Die Rearrangements of 5and Wyano-Zaorbomyl CationsHydroboration of the 5-norbornene-2-carbonitriles 11 afforded 5and '6-hydroxynorbornane...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.