Sustainable tourism research focuses on mitigating or remediating environmental, social and economic impacts on tourism. In the past years, Big Data approaches have been applied to the field of tourism allowing for remarkable progress. However, there seems to be little evidence to support that such approaches are an inspiration to sustainable tourism and are being implemented. In this context, we aim to obtain a comprehensive overview of the use of Big Data in sustainable tourism to address various issues and understand how Big Data can support decision-making in such scenarios. To that end, this paper reports on the results of a literature review via a combination of a Systematic Literature Review (SLR) in Software Engineering, and the use of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. In summary, we investigated four facets: (a) sources of big data, (b) approaches, (c) purposes, and (d) contexts of application. The results suggest that the use of various approaches have impacted practices in sustainable tourism. The findings provide a thorough understanding of the state of the art of Big Data application in sustainable tourism and provide valuable insights to foster growth both in terms of research and practice.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Official statistics on monthly export values have a publicity lag between the current period and the published publication. None of the previous researchers estimated the value of exports for the monthly period. This circumstance is due to limitations in obtaining supporting data that can predict the criteria for the current export value of goods. AIS data is one type of big data that can provide solutions in producing the latest indicators to forecast export values. Statistical Methods and Conventional Machine Learning are implemented as forecasting methods. Seasonal ARIMA and Artificial Neural Network (ANN) methods are both used in research to forecast the value of Indonesia’s exports. However, ANN has a weakness that requires high computational costs to obtain optimal parameters. Genetic Algorithm (GA) is effective in increasing ANN accuracy. Based on these backgrounds, this paper aims to develop and select an AIS indicator to predict the monthly export value in Indonesia and optimize ANN performance by combining the ANN algorithm with the genetic algorithm (GA-ANN). The research successfully established five indicators that can be used as predictors in the forecasting model. According to the model evaluation results, the genetic algorithm has succeeded in improving the performance of the ANN model as indicated by the resulting RMSE GA-ANN value, which is smaller than the RMSE of the ANN model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.