The drilling process of Inconel 718, a nickel-based superalloy, is very challenging due to the material properties, the operating conditions and the high quality requirements. Carbides within the material matrix cause an excessive amount of abrasive tool wear. Moreover, a large amount of the heat caused by the machining process, especially in drilling, has to be dissipated by the tool and the coolant, due to the low thermal conductivity of Inconel 718. This high thermal load also restricts the cutting speed. The combination of all attributes limits productivity and economic efficiency when drilling Inconel 718 with cemented carbide twist drills.This paper presents a method to adapt twist drills considering the mentioned demands by using geometry-modified tools. The aim is to increase the resistance against abrasive wear and to reduce the thermal loads; so that, tool life and bore quality can be improved. The analysis of the new tool geometry was realized by advanced Computational-Fluid-Dynamics (CFD) simulations. The simulations provide detailed information about the coolant flow and consequently the improved cooling of tool regions which are, on the suggested geometry, exposed to very high thermal loads. Experiments showed that the tool life can be increased by up to 50% in contradiction to a standard twist drill. The improvement on the bore quality was shown by determining the roundness deviation and the average surface roughness. In addition, micro hardness tests and metallurgy preparations were conducted to investigate the surface integrity of the bore surface layer. Although the presented geometry only represents a prototype status, the results are impressive. The tool life and the bore quality have been improved, and the simulations showed clearly that there is a significantly better coolant flow, when using the new geometry.
This study concerns the determination of the significant factors for an innovative deburring process: low pressure abrasive water‐jet blasting. The abrasive medium aluminum oxide (Al2O3) is classified according to the individual characteristics of different grain sizes. Then, the particle behavior in the air jet is analyzed with an optical measuring method, Particle Image Velocimetry (PIV); the velocity profile and the particle distribution of the dispersed system are obtained. Computational Fluid Dynamics (CFD) simulations were verified by comparing the experimental and numerical results, and the velocity range for the abrasive particles has been specified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.