Furosemide (FS), a loop diuretic drug commonly used for the treatment of hypertension and edema, exhibited color cocrystal polymorphism with coformer 4,4′bipyridine (4BPY) in the stoichiometry 2:1, albeit both the API and the cocrystal former are colorless. Crystallization from ethanol, isopropanol, ethanol−water (v/v, 1/1) mixture, and acetonitrile yielded pale yellow (form 1I, thin needles) and orange (form 1II, blocks) cocrystals concomitantly. Needles appeared from solution within a day, while the blocks were obtained after 1−2 days from the same flask, indicating that yellow needles were formed faster and the orange blocks were perhaps formed under thermodynamic conditions. Form 1I cocrystals could also be produced from the variety of common solvents. Cocrystallization of FS with 2,2′-bipyridine (2BPY) and 4-aminopyridine (4AP) gave colorless cocrystals 2 and 3, respectively, and did not exhibit polymorphism. The single-crystal X-ray structures, powder X-ray diffraction, photophysical characterization, differential scanning calorimetry, hot stage microscopy studies, and density functional theory (DFT) calculations provide insight into the structure−property relationship. The common structural features observed in all of the structures is the formation of sandwich motifs comprising FS and pyridines through πstacking interactions. These motifs are linked differently through hydrogen bonding interactions in all three directions. The significant color difference between the two cocrystals dimorphs could be attributed to the different π-stacking patterns and hydrogen bonding interactions between molecules of FS and 4BPY in their cocrystal structures. Investigation on the origin of the color difference using DFT calculations revealed the decrease in HOMO−LUMO gap for form 1II cocrystals (orange) compared to form 1I crystals (light yellow). The crystal-to-crystal thermal transformation of form 1I crystals to form 1II crystals of 1 suggests the role of π-stacking assemblies in driving the self-assembly.
Understanding the process of prenucleation clustering at supersaturating stage is of significant importance to envisage the polymorphism in crystalline materials. Preferential formation of a thermodynamically stable crystal form suggests energetically favored patterns of interactions which control molecular aggregation during nucleation. Introduction of additives during crystallization is sometimes used as a suitable strategy to obtain metastable polymorphs in cases where it is not easy to capture the same by conventional crystallization methods. Comparative analysis of energy relationships and intermolecular interactions between thermodynamically stable and metastable crystal forms provides valuable clues about the nature of growth synthons at prenucleation clustering and preferential crystallization of the thermodynamic form. Conformationally flexible sulfonamide/sulfoester derivatives constituting electron rich and electron-deficient aromatic rings were synthesized to study the interplay between π-stacking and hydrogen bonding synthons. We have identified and characterized the thermodynamically stable and metastable elusive polymorphs of aromatic sulfonamides 1 and 2 and sulfoesters 3 and 4. However, these compounds eluded polymorphism during crystallization from various common solvents/conditions and only produced thermodynamically stable crystals forms (form I crystals). Surprisingly, exploitation of pyrazinamide as an additive in different stoichiometric ratios during crystallization gave elusive polymorphs [three for 1 (form 1II, form 1III, and form 1IV) and one each for 2 (form 2II), 3 (form 3II), and 4 (form 4II)]. Molecules in stable crystal forms of these compounds are linked via extended chains of parallel displaced π···π stacking interactions that seem to play a vital role in driving the self-assembly of molecules and subsequently governing the nucleation process. In contrast, molecules in metastable polymorphs are devoid of such extended π-stacking assemblies. Interestingly, differential scanning calorimetry, hot stage microscopy, and X-ray crystallographic studies confirmed the thermal crystal-to-crystal transition of all three metastable polymorphs of 1 (form 1II, form 1III, and form 1IV) to its thermodynamically stable crystal form (form 1I). Conformational analysis of molecule 1 using density functional theory calculations also validated higher stability for syn conformation (observed in Form 1I crystals) over anti and midway conformations (seen in metastable polymorphs). Melt crystallization of form 1I crystals of 1 on the larger face (001) of δ-pyrazinamide and lattice matching analysis (GRACE) revealed that the layered arrangement of molecules of δ-pyrazinamide (on 001 face) during heterogeneous nucleation acts as a template (heteroepitaxy) to provide a preferential site for the nucleation of new metastable polymorphs by selectively inhibiting the most preferred crystal form from growing into the nucleus. Solution state one- and two-dimensional (NOESY) 1H NMR, scanning electron microscopy, ...
Background: This research project is designed to identify the anti-diabetic effects of the newly synthesized compounds to conclude the perspective of consuming one or more of these new synthetic compounds for diabetes management. Introduction: A series of dihydropyrimidine (DHPM) derivative bearing electron releasing and electron withdrawing substituent’s on phenyl ring (a-j) were synthesized and screened for anti-hyperglycemic(anti-diabetic) activity on streptozotocin (STZ) induced diabetic rat model. The newly synthesized compounds were characterized by using FT-IR, melting point, 1H and 13C NMR analysis. The crystal structure and supramolecular features were analyzed through single-crystal X-ray study. Anti-diabetic activity testing of newly prepared DHPM scaffolds was mainly based on their relative substituent on the phenyl ring along with urea and thiourea. Among the synthesized DHPM scaffold, the test compound c having chlorine group on phenyl ring at the ortho position to the hydropyrimidine ring with urea and methyl acetoacetate derivative shows moderate lowering of glucose level.However, the title compounds methyl 4-(4-hydroxy-3-methoxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate(g) and ethyl 4-(3-ethoxy-4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate(h)having methoxy and ethoxy substituents on phenyl ring show significant hypoglycemic activity compared to the remaining compounds from the scheme-1. Method: The experimental rat models for the study were divided into 13 groups (n = 10); group 1 animals were treated with 0.5% CMC (0.5mL) (vehicle); group 2 were considered the streptozotocin (STZ)/nicotinamide diabetic control group (DC) and untreated, group 3 diabetic animals were administered with gliclazide 50 mg/kg and act as a reference drug group. The remaining groups of the diabetic animals were administered with the newly synthesized dihydropyrimidine compounds in a single dose of 50 mg/kg orally using the oral gauge, daily for 7 days continuously. The blood glucose level was measured before and 72 hrs after nicotinamide-STZ injection, for confirmation of hyperglycemia and type 2 diabetes development. Results: Blood glucose levels were significantly (p<0.05) reduced after treatment with these derivatives. The mean percentage reduction for gliclazide was 50%, while that of synthesized compounds were approximately 36%. Conclusion: Our result suggests that the synthesized new DHPM derivative containing alkoxy group on the phenyl ring shows a significant lowering of glucose level compared to other derivatives.
Furosemide (FS), a loop diuretic drug, exhibits polymorphism not only in pure entity, but also in cocrystal/salt forms. In continuation of our previous report of color cocrystals polymorphism of FS and 4,4′-bipyridine (4BPY), FS was further screened for color cocrystals by cocrystallization with other pyridines using a slow evaporative solution crystallization method. Interestingly, 2:1 molecular salt of FS and 1,2-bis(4-pyridyl)ethylene (4BPE) displayed color polymorphism in isopropanol yielding an orange (form 1I, plates) and the yellow (form 1II, blocks) crystals concomitantly. The yield of orange crystals, which appeared within 10−15 h, has always been more compared to the later formed yellow crystals, thus signifying the preference for orange crystals. The cocrystallization experiment once also yielded a yellow-colored 2:3 molecular salt (form 1III); however these crystals could not be reproduced later. Further, cocrystallization of FS and 4BPE from THF, dioxane, and their mixture produced comparatively unstable solvates, form 1IV, form 1V, and form 1VI crystals, respectively. Cocrystallization of FS with other pyridines like 1,2 bis(4-pyridyl)ethane (4BPA), 1,2 bis(4-pyridyl)propane (4BPP), 1,2 bis(2-pyridyl)ethylene (2BPE), and 1,10phenanthroline (Phen) also gave colorless molecular salts 2, 4 and cocrystals 3 and 5 respectively. The single crystal structure analysis revealed the formation of a common sandwich motif between FS and pyridines through varying geometry π-stacking interactions in all the crystals. The significant color difference between the polymorphs could be attributed to the different levels of conjugation generated by dissimilar π-stacking patterns between the two components. Investigation on the origin of the color difference using density functional theory calculations revealed the decrease in the highest occupied molecular orbital−lowest unoccupied molecular orbital gap for orange crystals compared to yellow crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.