The region surrounding the well-known reflection nebula, NGC 7023, illuminated by a Herbig Be star, HD 200775, located in the dark cloud L1174 is studied in this work. Based on the distances and proper motion values from Gaia DR2 of 20 previously known young stellar object candidates, we obtained a distance of 335 ± 11 pc to the cloud complex L1172/1174. Using polarization measurements of the stars projected on the cloud complex, we show additional evidence for the cloud to be at ∼ 335 pc distance. Using this distance and proper motion values of the YSO candidates, we searched for additional comoving sources in the vicinity of HD 200775 and found 20 new sources which show low infrared excess emission and are of age ∼ 1 Myr. Among these, 10 YSO candidates and 4 newly identified comoving sources are found to show X-ray emission. Three of the four new sources for which we have obtained optical spectra show Hα in emission. About 80% of the total sources are found within ∼ 1 pc distance from HD 200775. Spatial correlation of some of the YSO candidates with the Herschel dust column density peaks suggests that star formation is still active in the region and may have been triggered by HD 200775.
Context. LDN 1157 is one of several clouds that are situated in the cloud complex LDN 1147/1158. The cloud presents a coma-shaped morphology with a well-collimated bipolar outflow emanating from a Class 0 protostar, LDN 1157-mm, that resides deep inside the cloud. Aims. The main goals of this work are (a) mapping the intercloud magnetic field (ICMF) geometry of the region surrounding LDN 1157 to investigate its relationship with the cloud morphology, outflow direction, and core magnetic field (CMF) geometry inferred from the millimeter- and submillimeter polarization results from the literature, and (b) to investigate the kinematic structure of the cloud. Methods. We carried out optical (R-band) polarization observations of the stars projected on the cloud to map the parsec-scale magnetic field geometry. We made spectroscopic observations of the entire cloud in the 12CO, C18O, and N2H+ (J = 1–0) lines to investigate its kinematic structure. Results. We obtained a distance of 340 ± 3 pc to the LDN 1147/1158, complex based on the Gaia DR2 parallaxes and proper motion values of the three young stellar objects (YSOs) associated with the complex. A single filament of ~1.2 pc in length (traced by the Filfinder algorithm) and ~0.09 pc in width (estimated using the Radfil algorithm) is found to run throughout the coma-shaped cloud. Based on the relationships between the ICMF, CMF, filament orientations, outflow direction, and the hourglass morphology of the magnetic field, it is likely that the magnetic field played an important role in the star formation process in LDN 1157. LDN 1157-mm is embedded in one of the two high-density peaks detected using the Clumpfind algorithm. The two detected clumps lie on the filament and show a blue-red asymmetry in the 12CO line. The C18O emission is well correlated with the filament and presents a coherent structure in velocity space. Combining the proper motions of the YSOs and the radial velocity of LDN 1147/1158 and an another complex, LDN 1172/1174, that is situated ~2° east of it, we found that the two complexes are moving collectively toward the Galactic plane. The filamentary morphology of the east-west segment of LDN 1157 may have formed as a result of mass lost by ablation through interaction of the moving cloud with the ambient interstellar medium.
The spatial distribution of the H I gas in galactic disks holds important clues about the physical processes that shape the structure and dynamics of the interstellar medium (ISM). The structure of the ISM could be affected by a variety of perturbations internal and external to the galaxy, and the unique signature of each of these perturbations could be visible in the structure of interstellar gas. In this work, we quantify the structure of the H I gas in a sample of 33 nearby galaxies taken from the HI Nearby Galaxy Survey (THINGS) using the delta-variance (Δ-variance) spectrum. The THINGS galaxies display a large diversity in their spectra, but there are a number of recurrent features. In many galaxies, we observe a bump in the spectrum on scales of a few to several hundred parsec. We find the characteristic scales associated with the bump to be correlated with the galactic star formation rate (SFR) for values of the SFR ≳0.5 M⊙ yr−1 and also with the median size of the H I shells detected in these galaxies. We interpret this characteristic scale as being associated with the effects of feedback from supernova explosions. On larger scales, we observe in most galaxies two self-similar, scale-free regimes. The first regime, on intermediate scales (≲0.5R25), is shallow, and the power law that describes this regime has an exponent in the range [0.1–1] with a mean value of 0.55 that is compatible with the density field that is generated by supersonic turbulence in the cold phase of the H I gas. The second power law is steeper, with a range of exponents between 0.5 and 2.3 and a mean value of ≈1.5. These values are associated with subsonic to transonic turbulence, which is characteristic of the warm phase of the H I gas. The spatial scale at which the transition between the two self-similar regimes occurs is found to be ≈0.5R25, which is very similar to the size of the molecular disk in the THINGS galaxies. Overall, our results suggest that on scales ≲0.5R25, the structure of the ISM is affected by the effects of supernova explosions. On larger scales (≳0.5R25), stellar feedback has no significant impact, and the structure of the ISM is determined by large-scale processes that govern the dynamics of the gas in the warm neutral medium, such as the flaring of the H I disk at large galactocentric radii and the effects of ram pressure stripping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.